由于现有的基于最大比合并MRC(Maximum Ratio Combination)的联合搜索定位算法实现复杂度高,为降低其计算复杂度,提出基于网格搜索的加权最大似然代价函数定位算法WMLGS(Weighted ML Grid Search Localization)。仿真结果表明:MRC和WMLG...由于现有的基于最大比合并MRC(Maximum Ratio Combination)的联合搜索定位算法实现复杂度高,为降低其计算复杂度,提出基于网格搜索的加权最大似然代价函数定位算法WMLGS(Weighted ML Grid Search Localization)。仿真结果表明:MRC和WMLGS算法的定位性能近似相等,在无地球表面约束条件下均优于单独时差或频差定位性能,并且逼近克拉美罗联合界,同MRC相比,WMLGS节省了一半左右的计算量,因此更具有实用价值。展开更多
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altit...Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with lkm spatial resolution for Antarctica. The mean absolute deviation between observed and estimated data in the map is about 5.4‰, and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic effects.展开更多
A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of th...A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.展开更多
文摘由于现有的基于最大比合并MRC(Maximum Ratio Combination)的联合搜索定位算法实现复杂度高,为降低其计算复杂度,提出基于网格搜索的加权最大似然代价函数定位算法WMLGS(Weighted ML Grid Search Localization)。仿真结果表明:MRC和WMLGS算法的定位性能近似相等,在无地球表面约束条件下均优于单独时差或频差定位性能,并且逼近克拉美罗联合界,同MRC相比,WMLGS节省了一半左右的计算量,因此更具有实用价值。
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
基金Under the auspices of National Natural Science Foundation of China (No. 40825017, 40576001)100 Talents Project of Chinese Academy of SciencesNational Key Technologies R&D Program of China (No. 2006BAB18B01)
文摘Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with lkm spatial resolution for Antarctica. The mean absolute deviation between observed and estimated data in the map is about 5.4‰, and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic effects.
文摘A new algorithm called the weighted least square discrete parameterization (WLSDP) is presented for the parameterization of triangular meshes over a convex planar region. This algorithm is the linear combination of the discrete Conformal mapping(DCM) and the discrete Authalic mapping(DAM). It provides the good properties of both DCM and DAM, such as robustness and low distortion. By adjusting the scaling factor q embedded in the WLSDP, satisfactory parameterizations in different special applications can be achieved.