给出一种改进的立体匹配算法。根据视差场的极限约束,采用图像线分割的匹配方法得到初始视差,由基于初始视差的交叉检测技术和可信度约束提取高可靠度的GCP点。针对视差图中的不可靠点,加入Bilateral Filter的自适应加权中值滤波,在由...给出一种改进的立体匹配算法。根据视差场的极限约束,采用图像线分割的匹配方法得到初始视差,由基于初始视差的交叉检测技术和可信度约束提取高可靠度的GCP点。针对视差图中的不可靠点,加入Bilateral Filter的自适应加权中值滤波,在由均值偏移图像分割算法得到的分割区域内,对像素的视差值进行投票,有效遏制局外点,得到更合理的视差图。在Middlebury test set上进行的测试结果表明,该算法具有较好的视差估计精度。展开更多
In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maxi...In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maximum value are used. In addition, a weighted median filter is employed to remove the detected noise. The simulation results show the capability of the proposed algorithm removes the noise effectively.展开更多
文摘给出一种改进的立体匹配算法。根据视差场的极限约束,采用图像线分割的匹配方法得到初始视差,由基于初始视差的交叉检测技术和可信度约束提取高可靠度的GCP点。针对视差图中的不可靠点,加入Bilateral Filter的自适应加权中值滤波,在由均值偏移图像分割算法得到的分割区域内,对像素的视差值进行投票,有效遏制局外点,得到更合理的视差图。在Middlebury test set上进行的测试结果表明,该算法具有较好的视差估计精度。
基金supported by the Korea Science and Engineering Foundation(KOSEF)granted bythe Korea government(MEST)(No.2009-0079776)
文摘In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maximum value are used. In addition, a weighted median filter is employed to remove the detected noise. The simulation results show the capability of the proposed algorithm removes the noise effectively.