本文得到了调和Besov空间中函数的泰勒系数增长性的一个估计,也证明了调和Besov空间中的函数关于Bergman度量是Lipschitz连续的。In this paper, we obtain an estimate of the growth of the Taylor coefficient of functions in harmo...本文得到了调和Besov空间中函数的泰勒系数增长性的一个估计,也证明了调和Besov空间中的函数关于Bergman度量是Lipschitz连续的。In this paper, we obtain an estimate of the growth of the Taylor coefficient of functions in harmonic Besov spaces and prove that functions in harmonic Besov spaces are Lipschitz continuous with respect to the Bergman metric.展开更多
令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作...令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作为证明的一个应用,本文也刻m画了算子S→u,φ,m=∑m i=0 Mu i C_(φ)R^(i)的类似性质.展开更多
文摘本文得到了调和Besov空间中函数的泰勒系数增长性的一个估计,也证明了调和Besov空间中的函数关于Bergman度量是Lipschitz连续的。In this paper, we obtain an estimate of the growth of the Taylor coefficient of functions in harmonic Besov spaces and prove that functions in harmonic Besov spaces are Lipschitz continuous with respect to the Bergman metric.
文摘令M_(u)为C^(n)中开单位球B上全纯函数符号为u的乘法算子,C_(φ)为B的全纯自映射符号为φ的复合算子,R^(m),m∈N为第m阶迭代径向导数算子.本文刻画了从加权Bergman空间到加权型空间上的算子C_(φ)R^(m)M_(u)的度量有界性和度量紧性.作为证明的一个应用,本文也刻m画了算子S→u,φ,m=∑m i=0 Mu i C_(φ)R^(i)的类似性质.
基金Supported by the NNSF of China (10471039)Supported by the Natural ScienceFoundation of Zhejiang Province ( M103104)Supported by the Natural ScienceFoundation of Huzhou City (2005YZ02)