传统的雨滴谱函数的拟合方法在不同的降水类型和不同分布函数下,可能存在拟合出来的雨滴谱函数与实际数据差异过大的情况,基于此问题,本文提出一种基于迭代重加权最小二乘法(Iterative Reweighed Least Square,IRLS)的雨滴谱函数拟合方...传统的雨滴谱函数的拟合方法在不同的降水类型和不同分布函数下,可能存在拟合出来的雨滴谱函数与实际数据差异过大的情况,基于此问题,本文提出一种基于迭代重加权最小二乘法(Iterative Reweighed Least Square,IRLS)的雨滴谱函数拟合方法。利用Parsivel激光雨滴谱仪2019年7—10月在海南安定获得的225组层状云降水样本和110组对流云降水样本数据进行实验,通过不断更新权值,迭代计算,从而求出待估计参数。模拟结果表明了该方法应用在不同降水类型和不同分布函数下,对比阶矩法和最小二乘法得到的拟合优度都是最接近1的。展开更多
目的现有显著性检测方法大多只关注显著目标的中心信息,使得算法只能得到中心清晰、边缘模糊的显著目标,丢失了一些重要的边界信息,而使用核范数约束进行低秩矩阵恢复,运算过程冗余。为解决以上问题,本文提出一种无监督迭代重加权最小...目的现有显著性检测方法大多只关注显著目标的中心信息,使得算法只能得到中心清晰、边缘模糊的显著目标,丢失了一些重要的边界信息,而使用核范数约束进行低秩矩阵恢复,运算过程冗余。为解决以上问题,本文提出一种无监督迭代重加权最小二乘低秩恢复算法,用于图像视觉显著性检测。方法将图像分为细中粗3种尺度的分割,从细粒度和粗粒度先验的融合中得到分割先验信息;将融合后的分割先验信息通过迭代重加权最小二乘法求解平滑低秩矩阵恢复,生成粗略显著图;使用中粒度分割先验对粗略显著图进行平滑,生成最终的视觉显著图。结果实验在MSRA10K(Microsoft Research Asia 10K)、SOD(salient object detection dataset)和ECSSD(extended complex scene saliency dataset)数据集上进行测试,并与现有的11种算法进行对比。结果表明,本文算法可生成边界清晰的显著图。在MSRA10K数据集上,本文算法实现了最高的AUC(area under ROC(receiver operating characteristic)curve)和F-measure值,MAE(mean absolute error)值仅次于SMD(structured matrix decomposition)算法和RBD(robust back ground detection)算法,AUC和F-measure值比次优算法RPCA(robust principal component analysis)分别提高了3.9%和12.3%;在SOD数据集上,综合AUC、F-measure和MAE值来看,本文算法优于除SMD算法以外的其他算法,AUC值仅次于SMD算法、SC(smoothness constraint)算法和GBVS(graph-based visual salieney)算法,F-measure值低于最优算法SMD 2.6%;在ECSSD数据集上,本文算法实现了最高的F-measure值75.5%,AUC值略低于最优算法SC 1%,MAE值略低于最优算法HCNs(hierarchical co-salient object detection via color names)2%。结论实验结果表明,本文算法能从前景复杂或背景复杂的显著图像中更准确地检测出边界清晰的显著目标。展开更多
针对零件缺陷、反光或是环境光照不足不均,提出了一种通过卷积神经网络(CNN)一次定位,再二次运用改进迭代重加权最小二乘法(Iterative Reweighted Least Squares,以下简称IRLS)进行筛选和拟合进而进行二次定位的方法。在一次定位时,训...针对零件缺陷、反光或是环境光照不足不均,提出了一种通过卷积神经网络(CNN)一次定位,再二次运用改进迭代重加权最小二乘法(Iterative Reweighted Least Squares,以下简称IRLS)进行筛选和拟合进而进行二次定位的方法。在一次定位时,训练模型的准确率和召回率分别达到98.2%和97.4%,结合二次定位识别率为99.1%,相较于常规形态学筛选和模板匹配在复杂光照下的识别率分别提高了31.9%和15.5%。二次定位时,圆孔的最大定位误差为0.65mm,平均误差0.31mm。对比Hough法和CNN直接定位,最大误差分别减少了33.0%和53.9%,平均误差分别减少了36.7%和50.8%。展开更多
该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空...该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。展开更多
文摘传统的雨滴谱函数的拟合方法在不同的降水类型和不同分布函数下,可能存在拟合出来的雨滴谱函数与实际数据差异过大的情况,基于此问题,本文提出一种基于迭代重加权最小二乘法(Iterative Reweighed Least Square,IRLS)的雨滴谱函数拟合方法。利用Parsivel激光雨滴谱仪2019年7—10月在海南安定获得的225组层状云降水样本和110组对流云降水样本数据进行实验,通过不断更新权值,迭代计算,从而求出待估计参数。模拟结果表明了该方法应用在不同降水类型和不同分布函数下,对比阶矩法和最小二乘法得到的拟合优度都是最接近1的。
文摘目的现有显著性检测方法大多只关注显著目标的中心信息,使得算法只能得到中心清晰、边缘模糊的显著目标,丢失了一些重要的边界信息,而使用核范数约束进行低秩矩阵恢复,运算过程冗余。为解决以上问题,本文提出一种无监督迭代重加权最小二乘低秩恢复算法,用于图像视觉显著性检测。方法将图像分为细中粗3种尺度的分割,从细粒度和粗粒度先验的融合中得到分割先验信息;将融合后的分割先验信息通过迭代重加权最小二乘法求解平滑低秩矩阵恢复,生成粗略显著图;使用中粒度分割先验对粗略显著图进行平滑,生成最终的视觉显著图。结果实验在MSRA10K(Microsoft Research Asia 10K)、SOD(salient object detection dataset)和ECSSD(extended complex scene saliency dataset)数据集上进行测试,并与现有的11种算法进行对比。结果表明,本文算法可生成边界清晰的显著图。在MSRA10K数据集上,本文算法实现了最高的AUC(area under ROC(receiver operating characteristic)curve)和F-measure值,MAE(mean absolute error)值仅次于SMD(structured matrix decomposition)算法和RBD(robust back ground detection)算法,AUC和F-measure值比次优算法RPCA(robust principal component analysis)分别提高了3.9%和12.3%;在SOD数据集上,综合AUC、F-measure和MAE值来看,本文算法优于除SMD算法以外的其他算法,AUC值仅次于SMD算法、SC(smoothness constraint)算法和GBVS(graph-based visual salieney)算法,F-measure值低于最优算法SMD 2.6%;在ECSSD数据集上,本文算法实现了最高的F-measure值75.5%,AUC值略低于最优算法SC 1%,MAE值略低于最优算法HCNs(hierarchical co-salient object detection via color names)2%。结论实验结果表明,本文算法能从前景复杂或背景复杂的显著图像中更准确地检测出边界清晰的显著目标。
文摘针对零件缺陷、反光或是环境光照不足不均,提出了一种通过卷积神经网络(CNN)一次定位,再二次运用改进迭代重加权最小二乘法(Iterative Reweighted Least Squares,以下简称IRLS)进行筛选和拟合进而进行二次定位的方法。在一次定位时,训练模型的准确率和召回率分别达到98.2%和97.4%,结合二次定位识别率为99.1%,相较于常规形态学筛选和模板匹配在复杂光照下的识别率分别提高了31.9%和15.5%。二次定位时,圆孔的最大定位误差为0.65mm,平均误差0.31mm。对比Hough法和CNN直接定位,最大误差分别减少了33.0%和53.9%,平均误差分别减少了36.7%和50.8%。
文摘该文基于贝叶斯分析的视角,揭示了一类算法,包括使用隐变量模型的稀疏贝叶斯学习(SBL),正则化FOCUSS算法以及Log-Sum算法之间的内在关联。分析显示,作为隐变量贝叶斯模型的一种,稀疏贝叶斯学习使用第2类最大似然(Type II ML)在隐变量空间进行运算,可以视作一种更为广义和灵活的方法,并且为不适定反问题的稀疏求解提供了改进的途径。较之于目前基于第1类最大似然(Type I ML)的稀疏方法,仿真实验证实了稀疏贝叶斯学习的优越性能。