期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
基于改进K-最近邻算法的变电站设备分类识别方法研究
1
作者 罗金满 梁浩波 +2 位作者 王莉娜 刘卓贤 肖啸 《电测与仪表》 北大核心 2024年第10期50-56,共7页
针对变电站设备三维点云数据采集缺陷造成的场景重建精度低、效率差等问题,在对识别过程进行分析的基础上,提出了一种结合K-最近邻分类算法和改进粒子群算的变电站设备分类识别方法。使用改进的粒子群优化算法来优化K-最近邻分类器的输... 针对变电站设备三维点云数据采集缺陷造成的场景重建精度低、效率差等问题,在对识别过程进行分析的基础上,提出了一种结合K-最近邻分类算法和改进粒子群算的变电站设备分类识别方法。使用改进的粒子群优化算法来优化K-最近邻分类器的输入权重,提高了设备的分类识别精度。通过仿真进行对比分析,验证该方法的优越性。结果表明,采用该方法的分类识别效果显著,训练准确率达到100%,测试准确率达到99%,与传统识别方法相比,识别准确率从97%提高到99%,平均识别时间从85.81 s降低到0.19 s。该方法解决了变电站设备三维点云数据采集缺陷造成的场景重建精度低、效率差、识别率低等问题,有效提高了变电站设备的分类识别效果,具有良好的实用价值和可操作性。 展开更多
关键词 三维点云数据 变电站设备 分类识别 k-最近 粒子群算法
下载PDF
改进最近邻算法求解多车场车辆路径问题
2
作者 李焱 潘大志 《计算机与数字工程》 2024年第9期2634-2639,共6页
论文提出了一种改进最近邻算法用于求解多车场车辆路径问题(multi-depot vehicle routing problem,MDVRP)。为了求解问题解空间得到有效控制,融合最近邻算法与K-means算法的优势对客户进行较为合理的车场分配,将多车场车辆路径问题分解... 论文提出了一种改进最近邻算法用于求解多车场车辆路径问题(multi-depot vehicle routing problem,MDVRP)。为了求解问题解空间得到有效控制,融合最近邻算法与K-means算法的优势对客户进行较为合理的车场分配,将多车场车辆路径问题分解成多个单车场车辆路径子问题。在子问题的求解阶段,提出一种编解码规则,基于车辆装载量利用率得到提高,减少车场车辆路径长度,设计了全局优化策略,基于车辆内部客户访问顺序及车辆间客户改变导致路径长度变化,设计了局部优化策略,提出了随车辆服务客户数变化而变化的搜索策略,提高了算法的运行效率。在不同规模的问题和仿真实验上验证了所提算法的有效性。 展开更多
关键词 车辆路径问题 多车场 最近算法 k-均值算法
下载PDF
基于逻辑回归的近邻分类耦合算法在医学骨科分类应用 被引量:1
3
作者 王宣谕 《现代信息科技》 2024年第11期158-162,共5页
随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归... 随着现代医学的迅速发展,生物力学可以用来模拟人体机械组成各部分之间的关系,根据骨科患者的生物力学特征可以预测患者的症状类别,为临床诊断提供依据。文章为进一步提高预测分类的准确性,结合机器学习理论以最近邻算法分类及逻辑回归耦合算法来进行医学方面的骨科分类,通过双算法准确度判断的耦合结果进行进一步判断,丰富算法的计算维度,进一步提高了分类准确率的精度。 展开更多
关键词 最近分类 耦合算法 生物特征
下载PDF
基于k-最近邻图的小样本KNN分类算法 被引量:27
4
作者 刘应东 牛惠民 《计算机工程》 CAS CSCD 北大核心 2011年第9期198-200,共3页
提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对... 提出一种基于k-最近邻图的小样本KNN分类算法。通过划分k-最近邻图,形成多个相似度较高的簇,根据簇内已有标记的数据对象来标识同簇中未标记的数据对象,同时剔除原样本集中的噪声数据,从而扩展样本集,利用该新样本集对类标号未知数据对象进行类别标识。采用标准数据集进行测试,结果表明该算法在小样本情况下能够提高KNN的分类精度,减小最近邻阈值k对分类效果的影响。 展开更多
关键词 KNN算法 k-最近 小样本 图划分 分类算法
下载PDF
有序规范实数对多相似度K最近邻分类算法
5
作者 崔昊阳 张晖 +3 位作者 周雷 杨春明 李波 赵旭剑 《计算机应用》 CSCD 北大核心 2023年第9期2673-2678,共6页
针对最近邻分类算法性能受到所采用的相似度或距离度量方法影响大,且难以选择最优的相似度或距离度量方法的问题,提出一种采用多相似度的基于有序规范实数对的K最近邻分类算法(OPNs-KNN)。首先,在机器学习领域中引入有序规范实数对(OPN... 针对最近邻分类算法性能受到所采用的相似度或距离度量方法影响大,且难以选择最优的相似度或距离度量方法的问题,提出一种采用多相似度的基于有序规范实数对的K最近邻分类算法(OPNs-KNN)。首先,在机器学习领域中引入有序规范实数对(OPN)这一新的数学理论,利用多种相似度或距离度量方法将训练集和测试集中所有样本全部转换为OPN,使每个OPN均包含不同的相似度信息;然后再通过改进的最近邻算法对OPN进行分类,实现不同相似度或距离度量方法的结合与互补,从而提高分类性能。实验结果表明,在Iris、seeds等数据集上与距离加权K近邻规则(WKNN)等6种最近邻分类的改进算法相比,OPNs-KNN的分类准确率提高了0.29~15.28个百分点,验证了所提算法能大幅提升分类的性能。 展开更多
关键词 机器学习 最近算法 多相似度 分类算法 有序规范实数对
下载PDF
K-最近邻分类技术的改进算法 被引量:25
6
作者 王晓晔 王正欧 《电子与信息学报》 EI CSCD 北大核心 2005年第3期487-491,共5页
该文提出了一种改进的K-最近邻分类算法。该算法首先将训练事例集中的每一类样本进行聚类,既减小了训练事例集的数据量,又去除了孤立点,大大提高了算法的快速性和预测精度,从而使该算法适用于海量数据集的情况。同时,在算法中根据每个... 该文提出了一种改进的K-最近邻分类算法。该算法首先将训练事例集中的每一类样本进行聚类,既减小了训练事例集的数据量,又去除了孤立点,大大提高了算法的快速性和预测精度,从而使该算法适用于海量数据集的情况。同时,在算法中根据每个属性对分类贡献的大小,采用神经网络计算其权重,将这些属性权重用在最近邻计算中,从而提高了算法的分类精度。在几个标准数据库和实际数据库上的实验结果表明,该算法适合于对复杂而数据量比较大的数据库进行分类。 展开更多
关键词 k-最近 聚类 权值调整 分类
下载PDF
基于Fuzzy ART的K-最近邻分类改进算法 被引量:4
7
作者 徐晓颖 王晓晔 杜太行 《河北工业大学学报》 CAS 2004年第6期1-5,共5页
提出了一种K-最近邻改进算法,该算法用模糊自适应共振理论(Fuzzy ART)对K-最近邻的训练样本集进行浓缩,以改善K-最近邻的计算速度.该算法首先用Fuzzy ART将训练样本集中的每一类样本进行聚类,减小了训练样本集的数据量,提高了算法的计... 提出了一种K-最近邻改进算法,该算法用模糊自适应共振理论(Fuzzy ART)对K-最近邻的训练样本集进行浓缩,以改善K-最近邻的计算速度.该算法首先用Fuzzy ART将训练样本集中的每一类样本进行聚类,减小了训练样本集的数据量,提高了算法的计算速度,保持了预测精度,从而使该算法适用于海量数据集的情况.实验表明,该算法适用于对复杂而数据量较大的数据库进行分类. 展开更多
关键词 模糊自适应共振理论 k-最近分类 聚类 分类
下载PDF
基于伽马内核与加权K近邻的流量分类算法
8
作者 徐魁 海洋 +3 位作者 许艺凡 段靖海 孙炜策 陶军 《计算机技术与发展》 2023年第2期214-220,共7页
K最近邻算法(KNN)是一种简单有效的分类方式。当数据集分布均衡,不同类别样本之间的差异显著时,KNN的分类效果一般较好。但实际中数据集通常不理想,网络流量往往呈现倾斜分布,存在样本之间差异不显著等问题。为了更好地权衡样本距离之... K最近邻算法(KNN)是一种简单有效的分类方式。当数据集分布均衡,不同类别样本之间的差异显著时,KNN的分类效果一般较好。但实际中数据集通常不理想,网络流量往往呈现倾斜分布,存在样本之间差异不显著等问题。为了更好地权衡样本距离之间差异以及流量类别分布不均带来的模型准确率下降问题,提出了一种基于Gamma内核与加权KNN的流量分类算法,综合考虑了距离和流量分布对分类结果的影响。采用Gamma分布函数作为内核,对不同类别采用自信息进行加权。最后得到G-WKNN模型,并将该模型应用于CIC-IDS2017数据集。实验结果表明,在流量均衡的情况下,模型准确率稳定在0.91左右。在流量不均衡时,依旧具备良好的分类表现。对比其余几种改良的KNN算法,其分类准确率较高且模型稳定性好,对K值相对不敏感。同时G-WKNN模型对少数类别分类准确率的提升效果也较为显著。 展开更多
关键词 K最近算法 GAMMA分布 自信息 距离函数 网络流量分类
下载PDF
遥感影像K-最近邻图目标分类改进算法的研究 被引量:4
9
作者 王振力 滕藤 +1 位作者 王群 黄忠演 《地理空间信息》 2021年第2期33-35,I0005,共4页
针对高分辨率遥感影像数据中典型目标的判别,提出基于K-最近邻图KNN改进算法的深度学习模型。该模型采用深度学习方法研究目标的属性,充分利用数据之间的关联,建立抗变换性的目标特征,可提高目标判别的准确度。高分辨遥感影像目标检测... 针对高分辨率遥感影像数据中典型目标的判别,提出基于K-最近邻图KNN改进算法的深度学习模型。该模型采用深度学习方法研究目标的属性,充分利用数据之间的关联,建立抗变换性的目标特征,可提高目标判别的准确度。高分辨遥感影像目标检测实验表明该方法的有效性。 展开更多
关键词 遥感影像 目标分类 KNN算法 k-最近 样本剪裁
下载PDF
基于改进k-最近邻回归算法的软测量建模 被引量:15
10
作者 叶涛 朱学峰 +1 位作者 李向阳 史步海 《自动化学报》 EI CSCD 北大核心 2007年第9期996-999,共4页
机器学习回归方法被广泛应用于复杂工业过程的软测量建模k-最近邻(kNN)算法是一种流行的学习算法,可用于函数回归问题.然而,传统kNN算法存在运行效率低、距离计算忽略特征权值的缺点.本文引入了二次型距离定义和样本集剪辑算法,改进了传... 机器学习回归方法被广泛应用于复杂工业过程的软测量建模k-最近邻(kNN)算法是一种流行的学习算法,可用于函数回归问题.然而,传统kNN算法存在运行效率低、距离计算忽略特征权值的缺点.本文引入了二次型距离定义和样本集剪辑算法,改进了传统kNN回归算法,并将改进的算法用于工业过程软测量建模.仿真实验得到了一些有益的结论. 展开更多
关键词 k-最近算法 二次型距离 软测量 纸浆KAPPA值
下载PDF
基于K-最近邻算法的未知病毒检测 被引量:15
11
作者 张波云 殷建平 +1 位作者 张鼎兴 嵩敬波 《计算机工程与应用》 CSCD 北大核心 2005年第6期7-10,共4页
因为准确检测计算机病毒是不可判定的,故该文提出了一种基于实例学习的k-最近邻算法来实现对计算机病毒的近似检测。该法可以克服病毒特征代码扫描法不能识别未知病毒的缺点。在该检测方法的基础上,文章设计了一个病毒检测网络模型,此... 因为准确检测计算机病毒是不可判定的,故该文提出了一种基于实例学习的k-最近邻算法来实现对计算机病毒的近似检测。该法可以克服病毒特征代码扫描法不能识别未知病毒的缺点。在该检测方法的基础上,文章设计了一个病毒检测网络模型,此模型适用于实时在线系统中的病毒检测,既可以实现对已知病毒的查杀,又可以对可疑程序行为进行分析评判,最终实现对未知病毒的识别。 展开更多
关键词 计算机病毒 k-最近算法 病毒检测
下载PDF
基于局部切空间排列和K-最近邻分类器的转子故障诊断方法 被引量:16
12
作者 孙斌 刘立远 牛翀 《中国机械工程》 EI CAS CSCD 北大核心 2015年第1期74-78,共5页
为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里... 为了解决大型机械设备故障数据难以准确快速提取的问题,提出了一种基于局部切空间排列(LTSA)和K-最近邻分类器的转子故障诊断模型。首先基于转子的振动信号构造一个高维多征兆矩阵,利用LTSA提取高维矩阵的低维特征向量,映射在可视空间里;然后将提取的低维特征向量输入K-最近邻分类器进行故障模式识别。试验和数据降维仿真过程表明,该模型的准确度和快速性均优于LTSA和神经网络以及LTSA和支持向量机组成的故障诊断模型。 展开更多
关键词 局部切空间排列 k-最近分类 模式识别 故障诊断
下载PDF
一种自适应k-最近邻算法的研究 被引量:16
13
作者 余小鹏 周德翼 《计算机应用研究》 CSCD 北大核心 2006年第2期70-72,共3页
针对传统k-最近邻算法(k-NearestNeighbor,kNN)存在搜索慢的缺陷,提出了一种改进型的自适应k-最近邻算法。该方法在以测试样本点为中心的超球内进行搜索,对超球半径的生长进行采样,建立半径生长的BP神经网络模型,逼近半径变化函数,并用... 针对传统k-最近邻算法(k-NearestNeighbor,kNN)存在搜索慢的缺陷,提出了一种改进型的自适应k-最近邻算法。该方法在以测试样本点为中心的超球内进行搜索,对超球半径的生长进行采样,建立半径生长的BP神经网络模型,逼近半径变化函数,并用该函数指导超球体的生长。该方法有效地缩小了搜索范围,减少了超球体半径生长的试探次数,对处理稀疏数据集有明显的优越性。 展开更多
关键词 模式分类 k-最近算法 超球 BP网络算法
下载PDF
基于k-最近邻分类增强学习的除冰机器人抓线控制 被引量:8
14
作者 魏书宁 王耀南 +1 位作者 印峰 杨易旻 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第4期470-476,共7页
输电线柔性结构特性给除冰机器人越障抓线控制带来极大困难.本文提出了一种结合k–最近邻(k-nearest neighbor,KNN)分类算法和增强学习算法的抓线控制方法.利用基于KNN算法的状态感知机制选择机器人当前状态k个最邻近状态并且对之加权.... 输电线柔性结构特性给除冰机器人越障抓线控制带来极大困难.本文提出了一种结合k–最近邻(k-nearest neighbor,KNN)分类算法和增强学习算法的抓线控制方法.利用基于KNN算法的状态感知机制选择机器人当前状态k个最邻近状态并且对之加权.根据加权结果决定当前最优动作.该方法可以得到机器人连续状态的离散表达形式,从而有效解决传统连续状态泛化方法带来的计算收敛性和维数灾难问题.借助增强学习算法探测和适应环境的能力,该方法能够克服机器人模型误差和姿态误差,以及环境干扰等因素对抓线控制的影响.文中给出了算法具体实现步骤,并给出了应用此方法控制除冰机器人抓线的仿真实验. 展开更多
关键词 除冰机器人 k–最近分类算法 增强学习 维数灾难
下载PDF
基于改进K最近邻分类算法的不良网页并行识别 被引量:6
15
作者 徐雅斌 李卓 陈俊伊 《计算机应用》 CSCD 北大核心 2013年第12期3368-3371,3379,共5页
互联网中,黄色、暴力、赌博、反动等不良网页大量存在。如果不进行有效过滤,将给搜索服务带来不良的影响。采用改进的K最近邻分类算法来提高识别的准确率,并在虚拟化平台上通过开源的Hadoop软件所提供的MapReduce模型进行分布式并行处... 互联网中,黄色、暴力、赌博、反动等不良网页大量存在。如果不进行有效过滤,将给搜索服务带来不良的影响。采用改进的K最近邻分类算法来提高识别的准确率,并在虚拟化平台上通过开源的Hadoop软件所提供的MapReduce模型进行分布式并行处理。对比实验结果表明,所采用的识别方法的识别准确率和识别效率都有较大的提高。 展开更多
关键词 不良网页 文本分类 K最近分类算法 HADOOP MAPREDUCE
下载PDF
基于局部特征尺度分解和核最近邻凸包分类算法的滚动轴承故障诊断方法 被引量:6
16
作者 杨宇 曾鸣 程军圣 《振动工程学报》 EI CSCD 北大核心 2013年第1期118-126,共9页
提出了一种基于局部特征尺度分解(Local characteristic-scale decomposition,LCD)和核最近邻凸包(Kernelnearest neighbor convex hull,KNNCH)分类算法的滚动轴承故障诊断方法。采用LCD方法对滚动轴承原始振动信号进行分解得到若干内... 提出了一种基于局部特征尺度分解(Local characteristic-scale decomposition,LCD)和核最近邻凸包(Kernelnearest neighbor convex hull,KNNCH)分类算法的滚动轴承故障诊断方法。采用LCD方法对滚动轴承原始振动信号进行分解得到若干内禀尺度分量(Intrinsic scale component,ISC),然后将这些ISC分量组成初始特征向量矩阵,再对该矩阵进行奇异值分解,提取奇异值作为故障特征向量并输入到KNNCH分类器,根据其输出结果来判断滚动轴承的工作状态和故障类型。LCD方法是一种新的自适应时频分析方法,非常适用于非平稳信号的处理,而KNNCH算法是一种基于核函数方法,并将凸包估计与最近邻分类思想相融合的模式识别算法,可直接应用于多类问题且需优化的参数只有核参数。实验分析结果表明,所提出的方法能有效地提取滚动轴承故障特征信息,而且在小样本的情况下仍能准确地对滚动轴承的工作状态和故障类型进行分类。同时,与支持向量机(Support vec-tor machine,SVM)算法的对比分析结果表明,KNNCH算法的分类性能的稳定性要高于SVM算法。 展开更多
关键词 滚动轴承 故障诊断 局部特征尺度分解 最近凸包分类算法 奇异值分解
下载PDF
面向非平衡混合数据的改进计数最近邻分类算法 被引量:2
17
作者 廖志芳 陈宇宙 +1 位作者 樊晓平 瞿志华 《计算机工程与应用》 CSCD 北大核心 2008年第12期139-141,共3页
非平衡混合数据是指数据集中类别不同的样本在数量上存在着较大的差别;同时样本数据集中的数据是非单一的数据类型,即它包含多种类型,如数值型和文本型数据。在对混合型数据的分类算法中,计数最近邻分类算法(CwkNN)可以有效地对混合型... 非平衡混合数据是指数据集中类别不同的样本在数量上存在着较大的差别;同时样本数据集中的数据是非单一的数据类型,即它包含多种类型,如数值型和文本型数据。在对混合型数据的分类算法中,计数最近邻分类算法(CwkNN)可以有效地对混合型数据进行分类,但该算法对数据的非平衡性处理效果不是太理想。在CwkNN的基础之上结合数据的非平衡性特点提出了基于全局密度和K-密度的分类算法来提高少数类样本的权重,从而提高数据的分类精确度。实验结果表明,全局密度分类算法和CwkNN算法的分类精度相当,K-局部密度分类算法在一定程度上提高了分类的精度。 展开更多
关键词 计数最近分类算法 非平衡数据 全局密度 k-密度
下载PDF
基于核距离加权的k-最近邻红外小目标检测 被引量:2
18
作者 陈晓斯 程正东 +2 位作者 樊祥 朱斌 丁磊 《激光与红外》 CAS CSCD 北大核心 2014年第9期1060-1064,共5页
城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中... 城市复杂背景边缘给空中红外小目标检测带来的非线性、非平稳热辐射信号影响严重。在采用k-最近邻分类判别决策的基础上,提出了一种基于核距离加权的k-最近邻红外小目标检测算法。该方法将每个预测窗口内的原始数据核映射到高维空间中进行分类,再对各近邻进行距离加权,遍历图像后得到预测结果。实验结果证明了该方法在抑制背景、增强目标方面都有较好的效果。 展开更多
关键词 城市防空 红外小目标检测 k-最近 核方法 距离加权
下载PDF
基于Hilbert曲线的近似k-最近邻查询算法 被引量:6
19
作者 徐红波 郝忠孝 《计算机工程》 CAS CSCD 北大核心 2008年第12期47-49,共3页
在低维空间中R树的查询效率较高,而在高维空间中其性能急剧恶化,降维成为解决问题的关键。利用Hilbert曲线的降维特性,该文提出基于Hilbert曲线近似k-最近邻查询算法AKNN,分析近似k-最近邻的误差。实验结果表明算法在执行时间上优于线... 在低维空间中R树的查询效率较高,而在高维空间中其性能急剧恶化,降维成为解决问题的关键。利用Hilbert曲线的降维特性,该文提出基于Hilbert曲线近似k-最近邻查询算法AKNN,分析近似k-最近邻的误差。实验结果表明算法在执行时间上优于线性扫描和基于R树最短优先查询算法,近似解的质量较好。 展开更多
关键词 k-最近 降维 HILBERT曲线 近似算法
下载PDF
基于近邻卷积神经网络的油画分类方法研究
20
作者 钱华 祁枢杰 +2 位作者 顾涔 陶然 吴宏杰 《苏州科技大学学报(自然科学版)》 CAS 2024年第1期69-75,共7页
油画分类是油画生成、油画识别及数字油画应用的重要基础工作。但由于油画图片与普通图片存在较大的质感差异,而且是油画家的个性化创作,不确定性更高,较普通照片的分类更困难。论文以分类出含有桥梁的油画为例,提出一种基于近邻卷积神... 油画分类是油画生成、油画识别及数字油画应用的重要基础工作。但由于油画图片与普通图片存在较大的质感差异,而且是油画家的个性化创作,不确定性更高,较普通照片的分类更困难。论文以分类出含有桥梁的油画为例,提出一种基于近邻卷积神经网络的油画分类方法,利用K最近邻分类算法提取与测试样本最接近的K个训练样本,卷积神经网络挖掘油画中的深层特征,从而对油画中的对象进行分类。论文详细讨论了数据处理、卷积神经网络的架构设计、训练过程。并在kaggle数据集上对该方法进行了分析与比较,使用三个数据集进行实验,实验结果表明该方法较最近邻算法精度上平均提高了2.4%,较卷积神经网络精度上平均提高了3.1%,较支持向量机方法精度上平均提高了6.9%。 展开更多
关键词 卷积神经网络 K最近分类算法 数据可视化 图像分类
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部