期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种加权的ML—kNN算法
1
作者
王春艳
《电脑知识与技术》
2012年第2期816-818,851,共4页
ML—kNN算法利用贝叶斯概率修改传统的kNN算法以解决多标签问题,但这种基于概率统计的方法对覆盖率低的标签容易造成误判。因此,该文提出了一种加权ML—kNN算法,将样本与邻居之间的距离转化为权值来改这种误判。在三个基准数据集上...
ML—kNN算法利用贝叶斯概率修改传统的kNN算法以解决多标签问题,但这种基于概率统计的方法对覆盖率低的标签容易造成误判。因此,该文提出了一种加权ML—kNN算法,将样本与邻居之间的距离转化为权值来改这种误判。在三个基准数据集上进行对比实验,利用七个标准对其进行评测。实验结果表明,该加权ML—kNN算法整体上优于ML—kNN算法。
展开更多
关键词
多标签学习
ml
—knn
距离
加权
加权ml—knn
下载PDF
职称材料
题名
一种加权的ML—kNN算法
1
作者
王春艳
机构
同济大学计算机科学与技术系
出处
《电脑知识与技术》
2012年第2期816-818,851,共4页
文摘
ML—kNN算法利用贝叶斯概率修改传统的kNN算法以解决多标签问题,但这种基于概率统计的方法对覆盖率低的标签容易造成误判。因此,该文提出了一种加权ML—kNN算法,将样本与邻居之间的距离转化为权值来改这种误判。在三个基准数据集上进行对比实验,利用七个标准对其进行评测。实验结果表明,该加权ML—kNN算法整体上优于ML—kNN算法。
关键词
多标签学习
ml
—knn
距离
加权
加权ml—knn
Keywords
Multi-label Learning
ml
-
knn
Distance weight
Weighted
ml
-
knn
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种加权的ML—kNN算法
王春艳
《电脑知识与技术》
2012
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部