Metal-organic-framework (MOF)-based materials with novel physicochemical properties have emerged as promising catalysts for various hydrogenation reactions. In addition to metal clusters and multifunctional organic...Metal-organic-framework (MOF)-based materials with novel physicochemical properties have emerged as promising catalysts for various hydrogenation reactions. In addition to metal clusters and multifunctional organic ligands, MOF-based catalysts can incorporate other functional species, and thus provide various active sites for hydrogenation processes. The structural properties of the catalysts play significant roles in enhancing the interactions among the reactants, products, and catalytic sites, which can be rationally designed. Because of the synergistic effects between the ac-tive sites and the structural properties, MOF-based catalysts can achieve higher activities and selec- tivities in hydrogenation reactions than can be obtained using traditional heterogeneous catalysts. This review provides an overview of recent developments in MOF-based catalysts in the hydro-genation of alkenes, alkynes, nitroarenes, cinnamaldehyde, furfural, benzene, and other compounds. Strategies for improving the catalytic performances of MOF-based catalysts are discussed as well as the different active sites and structural properties of the catalysts.展开更多
Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is ...Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is often utilized for oxidation reactions, ceria has recently attracted intense research interest for its unusual ability to selectively hydrogenate alkynes to alkenes. The intriguing hydrogenation ability of ceria has sparked renewed research efforts to understand how pure ceria works as a hydrogenation catalyst. In this review, recent advances in both experimental and computational studies of ceria are summarized, focusing on the interaction of ceria with H2 and in hydrogenation reactions. Significant insights from various studies including in situ spectroscopy/microscopy and theoretic modeling of ceria in hydrogen-involved reactions are discussed, which shed light on the origin of the hydrogenation ability of ceria and the reaction mechanisms involved in ceria-catalyzed alkyne hydrogenation. Ways to further improve both the mechanistic understanding and catalytic performance of ceria-based materials for hydrogenation reactions are proposed at the end in the summary and outlook section.展开更多
Al2O3-CeO2 supports containing 1-10 wt%Ce were prepared mechanochemically by milling aluminum and/or cerium nitrates with NH4HCO3.Heteropolymolybdate,(NH4)4NiMo6O(24),was used as the precursor of the Ni and Mo to ...Al2O3-CeO2 supports containing 1-10 wt%Ce were prepared mechanochemically by milling aluminum and/or cerium nitrates with NH4HCO3.Heteropolymolybdate,(NH4)4NiMo6O(24),was used as the precursor of the Ni and Mo to prepare NiMo6/Al2O3-CeO2 components in catalysts by impregnation method.The physicochemical properties of the catalysts were determined using chemical analysis,X-ray diffraction,temperature-programmed H2 reduction,temperature-programmed NH3 desorption,X-ray photoelectron spectroscopy(XPS),and the Brunauer-Emmett-Teller method.The catalyst acidity decreased with increasing Ce concentration in the support.XPS showed that the NiS/MoS ratio decreased two-fold for the Ce-modified alumina support.NiMo6/Al2O3,which had the highest acidity,showed the highest activity in hydrodesulfurization of 1-benzothiophene(normalized per weight of catalyst).The concentration of surface MoOxSy species(which is equal to the concentration of Mo^(5+)) gradually decreased to zero for catalysts with Ce concentrations 10 wt%.However,the activities of all the catalysts prepared mechanochemically from Al2O3 and Al2O3-CeO2supports significantly exceeded that of a reference NiMo6/Al2O3 catalyst prepared by impregnation method using the same precursor and with the same composition.展开更多
基金supported by the National Natural Science Foundation of China(21322606,21436005,21576095)China Postdoctoral Science Foundation(2016M590771)Guangdong Natural Science Foundation(2016A030310413,2013B090500027,2014A030310445,2016A050502004)~~
文摘Metal-organic-framework (MOF)-based materials with novel physicochemical properties have emerged as promising catalysts for various hydrogenation reactions. In addition to metal clusters and multifunctional organic ligands, MOF-based catalysts can incorporate other functional species, and thus provide various active sites for hydrogenation processes. The structural properties of the catalysts play significant roles in enhancing the interactions among the reactants, products, and catalytic sites, which can be rationally designed. Because of the synergistic effects between the ac-tive sites and the structural properties, MOF-based catalysts can achieve higher activities and selec- tivities in hydrogenation reactions than can be obtained using traditional heterogeneous catalysts. This review provides an overview of recent developments in MOF-based catalysts in the hydro-genation of alkenes, alkynes, nitroarenes, cinnamaldehyde, furfural, benzene, and other compounds. Strategies for improving the catalytic performances of MOF-based catalysts are discussed as well as the different active sites and structural properties of the catalysts.
基金sponsored by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Chemical Science,Geosciences,and Biosciences Division,Catalysis Science program。
文摘Cerium oxide(ceria) has found a wide variety of applications in catalysis including as a catalyst, a modifier, or a support, largely thanks to its robust redox properties and versatile acid-base function. While it is often utilized for oxidation reactions, ceria has recently attracted intense research interest for its unusual ability to selectively hydrogenate alkynes to alkenes. The intriguing hydrogenation ability of ceria has sparked renewed research efforts to understand how pure ceria works as a hydrogenation catalyst. In this review, recent advances in both experimental and computational studies of ceria are summarized, focusing on the interaction of ceria with H2 and in hydrogenation reactions. Significant insights from various studies including in situ spectroscopy/microscopy and theoretic modeling of ceria in hydrogen-involved reactions are discussed, which shed light on the origin of the hydrogenation ability of ceria and the reaction mechanisms involved in ceria-catalyzed alkyne hydrogenation. Ways to further improve both the mechanistic understanding and catalytic performance of ceria-based materials for hydrogenation reactions are proposed at the end in the summary and outlook section.
基金Czech Science Foundation(Project P106/11/0902) for financial support
文摘Al2O3-CeO2 supports containing 1-10 wt%Ce were prepared mechanochemically by milling aluminum and/or cerium nitrates with NH4HCO3.Heteropolymolybdate,(NH4)4NiMo6O(24),was used as the precursor of the Ni and Mo to prepare NiMo6/Al2O3-CeO2 components in catalysts by impregnation method.The physicochemical properties of the catalysts were determined using chemical analysis,X-ray diffraction,temperature-programmed H2 reduction,temperature-programmed NH3 desorption,X-ray photoelectron spectroscopy(XPS),and the Brunauer-Emmett-Teller method.The catalyst acidity decreased with increasing Ce concentration in the support.XPS showed that the NiS/MoS ratio decreased two-fold for the Ce-modified alumina support.NiMo6/Al2O3,which had the highest acidity,showed the highest activity in hydrodesulfurization of 1-benzothiophene(normalized per weight of catalyst).The concentration of surface MoOxSy species(which is equal to the concentration of Mo^(5+)) gradually decreased to zero for catalysts with Ce concentrations 10 wt%.However,the activities of all the catalysts prepared mechanochemically from Al2O3 and Al2O3-CeO2supports significantly exceeded that of a reference NiMo6/Al2O3 catalyst prepared by impregnation method using the same precursor and with the same composition.