The production of octahydrocoumarin,which can serve as a replacement for toxic coumarin,was investigated using 5% Ru on active carbon(Ru/C) as the catalyst for the hydrogenation of coumarin. The hydrogenation was stud...The production of octahydrocoumarin,which can serve as a replacement for toxic coumarin,was investigated using 5% Ru on active carbon(Ru/C) as the catalyst for the hydrogenation of coumarin. The hydrogenation was studied by optimizing the reaction conditions(pressure,solvent and coumarin concentration). The activity and selectivity of the Ru/C catalyst were compared for different solvents. The mechanism of coumarin hydrogenation was deduced. The formation of side products was explained. The optimal hydrogenation reaction conditions were: 130 °C,10 MPa,60 wt% coumarin in methanol,and 0.5 wt%(based on coumarin) of Ru/C catalyst. At the complete conversion of coumarin,the selectivity to the desired product was 90%.展开更多
Spherical Nano-scale nickel hydroxide was prepared through precipitation transmutation method by controlling the transmutation conditions in this paper. The measurement results of XRD and TEM indicate that the crystal...Spherical Nano-scale nickel hydroxide was prepared through precipitation transmutation method by controlling the transmutation conditions in this paper. The measurement results of XRD and TEM indicate that the crystallization of the nano-scale nickel hydroxide isβ-style and its shape is spherical with a diameter of 40~70 nanometer. The adulteration experiment shows that the adulteration ratio of nano- scale Ni(OH) 2 in common spherical micrometer-scale Ni(OH) 2 exists a optimal value (1∶9). And at this point, the utilization ratio of Ni(OH) 2 in electrodes can be raised by 10%, and the nano-scale nickel hydroxide with sphericity shape shows a better adulteration performance than that with needle shape.展开更多
The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and opt...The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.展开更多
基金supported by specific university research(MSMT No.20/2014)
文摘The production of octahydrocoumarin,which can serve as a replacement for toxic coumarin,was investigated using 5% Ru on active carbon(Ru/C) as the catalyst for the hydrogenation of coumarin. The hydrogenation was studied by optimizing the reaction conditions(pressure,solvent and coumarin concentration). The activity and selectivity of the Ru/C catalyst were compared for different solvents. The mechanism of coumarin hydrogenation was deduced. The formation of side products was explained. The optimal hydrogenation reaction conditions were: 130 °C,10 MPa,60 wt% coumarin in methanol,and 0.5 wt%(based on coumarin) of Ru/C catalyst. At the complete conversion of coumarin,the selectivity to the desired product was 90%.
文摘Spherical Nano-scale nickel hydroxide was prepared through precipitation transmutation method by controlling the transmutation conditions in this paper. The measurement results of XRD and TEM indicate that the crystallization of the nano-scale nickel hydroxide isβ-style and its shape is spherical with a diameter of 40~70 nanometer. The adulteration experiment shows that the adulteration ratio of nano- scale Ni(OH) 2 in common spherical micrometer-scale Ni(OH) 2 exists a optimal value (1∶9). And at this point, the utilization ratio of Ni(OH) 2 in electrodes can be raised by 10%, and the nano-scale nickel hydroxide with sphericity shape shows a better adulteration performance than that with needle shape.
基金the financial support from the SINOPEC(No.114016)
文摘The 3rd generation catalytic cracking naphtha selective hydrodesulfurization(RSDS-III) technology developed by RIPP included the catalysts selective adjusting(RSAT) technology, the development of new catalysts and optimized process conditions. The pilot plant test results showed that the RSDS-III technology could be adapted to different feedstocks. The sulfur content dropped from 600 μg/g and 631 μg/g to 7 μg/g and 9 μg/g, respectively, by RSDS-III technology when feed A and feed B were processed to meet China national V gasoline standard, with the RON loss of products equating to 0.9 units and 1.0 unit, respectively. While the feed C with a medium sulfur content was processed according to the full-range naphtha hydrotreating technology, the sulfur content dropped from 357 μg/g in the feed to 10 μg/g in gasoline, with the RON loss of product decreased by only 0.6 units. Thanks to the high HDS activity and good selectivity of RSDS-III technology, the ultra-low-sulfur gasoline meeting China V standard could be produced by the RSDS-III technology with little RON loss.