This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial ...This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial application of the catalyst have revealed that the catalyst after pretreatment including drying, sulfidation and reduction can process VGO into base oils meeting the HVI II and HVI II+ standards, and can manufacture base oils meeting the HVI III standard after incorporating the filtrate oil or gatch from acetone-benzene solvent dewaxing unit. The nitrogen content of the feed oil to the IDW reactor should be controlled at 1.0—1.5 ppm, while the CO and CO2 contents in fresh hydrogen is strictly controlled to avoid poisoning of the IDW-HDF catalysts.展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catal...After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.展开更多
This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the...This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.展开更多
The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by c...The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.展开更多
This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating u...This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating unit at Shengli refinery of Qilu Petrochemical Company. This catalyst features large pore volume and large pore diameter. The production practice for more than one year has revealed that the domestic upflow residuum hydrotreating catalyst has shown good performance and stability over the whole period of operation despite its high activity at the start of run, and has basically reached the level of similar imported catalyst.展开更多
The RHT technology is developed by Research Institute of Petroleum Processing (RIPP) for residuum hydrotreating in order to produce good quality RFCC feed. The advantages of the RHT series catalysts are presented in t...The RHT technology is developed by Research Institute of Petroleum Processing (RIPP) for residuum hydrotreating in order to produce good quality RFCC feed. The advantages of the RHT series catalysts are presented in this article, based on the results of activity tests and a 9500 hours service life test in pilot plants and the assessment on a commercial application.展开更多
This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combinat...This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combination technologies for resid processing. Taking into account the actual commercial practice of resid hydrogenation units, this article has also discussed methods for processing high-sulfur inferior crudes as well as the suitability of resid hydrogenation technology.展开更多
文摘This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial application of the catalyst have revealed that the catalyst after pretreatment including drying, sulfidation and reduction can process VGO into base oils meeting the HVI II and HVI II+ standards, and can manufacture base oils meeting the HVI III standard after incorporating the filtrate oil or gatch from acetone-benzene solvent dewaxing unit. The nitrogen content of the feed oil to the IDW reactor should be controlled at 1.0—1.5 ppm, while the CO and CO2 contents in fresh hydrogen is strictly controlled to avoid poisoning of the IDW-HDF catalysts.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
文摘After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.
文摘This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.
文摘The process of benzene hydrogenation over Mo2C catalyst has been studied. Mo2C was the active phase in benzene hydrogenation. The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.
文摘This article refers to the first commercial application of upflow residuum hydrotreating serial catalyst, developed by Fushun Research Institute of Petroleum and Petrochemicals (FRIPP), in the residuum hydrotreating unit at Shengli refinery of Qilu Petrochemical Company. This catalyst features large pore volume and large pore diameter. The production practice for more than one year has revealed that the domestic upflow residuum hydrotreating catalyst has shown good performance and stability over the whole period of operation despite its high activity at the start of run, and has basically reached the level of similar imported catalyst.
文摘The RHT technology is developed by Research Institute of Petroleum Processing (RIPP) for residuum hydrotreating in order to produce good quality RFCC feed. The advantages of the RHT series catalysts are presented in this article, based on the results of activity tests and a 9500 hours service life test in pilot plants and the assessment on a commercial application.
文摘This article has analyzed the environment and tasks confronting China's petroleum refining industry, and has referred to principles for selecting the resid processing technologies and viability of various combination technologies for resid processing. Taking into account the actual commercial practice of resid hydrogenation units, this article has also discussed methods for processing high-sulfur inferior crudes as well as the suitability of resid hydrogenation technology.