期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
全二维气相色谱-飞行时间质谱分析煤直接液化深度加氢馏分油中特殊气味的分子组分 被引量:2
1
作者 盖青青 刘聪云 +4 位作者 朱豫飞 韩来喜 申巧玲 马琳鸽 李永龙 《分析仪器》 CAS 2022年第5期6-12,共7页
煤直接液化深度加氢馏分油具有硫、氮及多环芳烃含量低、环烷烃含量高、凝点低等特点,是生产轻质白油的优良原料。但因其组分复杂、馏程范围宽,其未知组成影响高附加值下游产品的工艺开发与生产。因此,采用比传统一维气相色谱质谱具有... 煤直接液化深度加氢馏分油具有硫、氮及多环芳烃含量低、环烷烃含量高、凝点低等特点,是生产轻质白油的优良原料。但因其组分复杂、馏程范围宽,其未知组成影响高附加值下游产品的工艺开发与生产。因此,采用比传统一维气相色谱质谱具有更高分离度、峰容量和分辨率的全二维气相色谱-飞行时间质谱,分析表征了煤直接液化深度加氢馏分油中特殊气味的组成。实验通过对二维色谱柱的优化,得到煤直接液化深度加氢171.2℃~232.4℃馏分段的最佳分离条件。二维谱图和典型标准样品的比对结果表明,煤直接液化深度加氢馏分油中的特殊气味来自十氢化萘及其同系物。选择离子提取法计算了煤直接液化深度加氢馏分油中十氢化萘及同系物含量达到38.8%。该方法方便快捷、准确度高,适用于低馏分段的煤直接液化深度加氢馏分油的分析,为煤直接液化深度加氢馏分油的表征和加工机理的研究提供了技术支持。 展开更多
关键词 全二维气相色谱 飞行时间质谱 煤直接液化 深度加氢馏分油 分子组成
下载PDF
重劣质油作为煤直接液化溶剂的研究
2
作者 魏江涛 李晓宏 +2 位作者 高伟 李文选 韩智发 《应用化工》 CAS CSCD 北大核心 2019年第S01期127-129,共3页
探讨了煤直接液化溶剂在煤直接液化过程中的重要作用,重点介绍了油浆和油煤共炼产物中的某三种重劣质油(含固重劣质油、脱固重劣质油、加氢重馏分油)作为煤直接液化部分溶剂的研究进展,发现在悬浮床加氢裂化中试装置上,在煤浓度为40%~45... 探讨了煤直接液化溶剂在煤直接液化过程中的重要作用,重点介绍了油浆和油煤共炼产物中的某三种重劣质油(含固重劣质油、脱固重劣质油、加氢重馏分油)作为煤直接液化部分溶剂的研究进展,发现在悬浮床加氢裂化中试装置上,在煤浓度为40%~45%、反应温度465~468℃、压力20~22 MPa、空速0.5 kg/(h·L)、催化剂占总量的1%的工艺条件下,其中一种重劣质油(加氢重馏分油)是煤直接液化比较好的溶剂。 展开更多
关键词 煤直接液化 溶剂 悬浮床裂化 加氢馏分油
下载PDF
陕煤集团低阶煤分质利用绿色低碳发展研究 被引量:8
3
作者 尚建选 张喻 刘燕 《中国煤炭》 2022年第8期39-47,共9页
低阶煤是煤炭清洁高效利用的一条重要路径。介绍了陕煤集团在低阶煤分质利用方面所取得的关键核心技术成果,重点阐述了陕煤集团新型直立炉热解技术、小粒煤热解工艺、粉煤热解工艺、煤焦油制芳烃及特种油品制备技术、半焦利用技术、热... 低阶煤是煤炭清洁高效利用的一条重要路径。介绍了陕煤集团在低阶煤分质利用方面所取得的关键核心技术成果,重点阐述了陕煤集团新型直立炉热解技术、小粒煤热解工艺、粉煤热解工艺、煤焦油制芳烃及特种油品制备技术、半焦利用技术、热解煤气利用技术等关键技术及其应用进展:新型直立炉热解技术实现了粉煤、小粒煤、块煤的综合热解提质,热解效率大幅提升;自主研发的低阶粉煤气固热载体双循环快速热解技术(SM SP)使粉煤与热载体能充分混合接触并快速反应实现煤的热解;自主研发的煤焦油全馏分加氢多产中间馏分油技术(FTH),解决了低温煤焦油沥青难以加氢转化的世界性难题,为煤焦油全馏分加氢产业化打下了坚实的基础。最后,提出陕煤集团低阶煤分质清洁高效利用中长期发展目标。 展开更多
关键词 陕煤集团 低阶煤分质利用 小粒煤热解工艺 低阶粉煤气固热载体双循环快速热解技术(SM-SP) 煤焦油全馏分多产中间馏分油技术(FTH) 绿色低碳发展
下载PDF
Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction
4
作者 Wega Tnsunaryant Akhmad Syoufian Suryo Purwono 《Journal of Chemistry and Chemical Engineering》 2013年第2期175-180,共6页
Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activ... Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatment at temperature 500 ℃ for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCI 3 N at temperature of 90 ℃ for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 rain. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and AI) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 ℃, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (〉 C20).Thc conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction. 展开更多
关键词 Natural zeolite CHARACTERIZATION MODIFICATION HYDROCRACKING waste lubricant oil.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部