The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenati...The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.展开更多
MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanow...MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanowires via controlled oxide-assisted chemical vapor deposition and observed a characteristic signature of skyrmion magnetic ordering in the MnSi nanowires. The thickness of the SiO2 layer on the Si substrate plays the key role in obtaining a high yield of B20 MnSi skyrmion nanowires. A growth mechanism was proposed that is consistent with the existence of an optimum SiO2 thickness. A growth phase diagram was constructed based on the extensive studies of various growth conditions for various MnSi nanostructures. The persistence of both the helicoidal and skyrmion magnetic ordering in the one-dimensional wires was directly revealed by ac and dc magnetic measurements.展开更多
文摘The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.
文摘MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanowires via controlled oxide-assisted chemical vapor deposition and observed a characteristic signature of skyrmion magnetic ordering in the MnSi nanowires. The thickness of the SiO2 layer on the Si substrate plays the key role in obtaining a high yield of B20 MnSi skyrmion nanowires. A growth mechanism was proposed that is consistent with the existence of an optimum SiO2 thickness. A growth phase diagram was constructed based on the extensive studies of various growth conditions for various MnSi nanostructures. The persistence of both the helicoidal and skyrmion magnetic ordering in the one-dimensional wires was directly revealed by ac and dc magnetic measurements.