Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical hea...Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.展开更多
The hydration of cement compounds gives hydrated compounds, which allow linking together, the different particles and aggregate of cement, and gives the concrete the required qualities. The dynamics of hydration react...The hydration of cement compounds gives hydrated compounds, which allow linking together, the different particles and aggregate of cement, and gives the concrete the required qualities. The dynamics of hydration reactions will depend on many factors, such as the fineness of cement, the ratio w/c during hydration, temperature, mixing technique, and the presence of additives in blended cement, as pozzolan, tuff and slag from blast furnaces. We studied the thermal and kinetic reactions of Portland cement hydration, and its variants with different additions using a differential scanning calorimetric analysis. The parameters from these models of curves allow us to evaluate the enthalpies, and the degree of progression of this blended cement, and finally determine their activation energies. We can say that the hydration of Portland cement is due to a series of reactions as ( C3S,C2S,C3A and C4AF reactions with water) and each of them, has its own kinetic, the experimental measurement of the heat of hydration, allows us to represent the overall kinetics of these reactions values of activation energy, they are therefore apparent and global energy. In our experiments, significant differences in these physicochemical parameters were observed, depending on the additive used.展开更多
A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capac...A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.展开更多
The effects of fire extinguishment with water mist by adding different additives were studied.Tens of chemical substances (including alkali metal salt,dilution agent and surface active agent) were selected as additive...The effects of fire extinguishment with water mist by adding different additives were studied.Tens of chemical substances (including alkali metal salt,dilution agent and surface active agent) were selected as additives due to their different extinct mechanisms.At first the performance of fire extinguishment with single additive was studied,then the effects of the same kinds of chemical substances under the same mass fraction were compared to study their influences on the fire extinguishment factors,including extinct time,fire temperature and oxygen concentration from which the fire extinct mechanism with additives could be concluded.Based on this the experiments were conducted to study the cooperate effect of the complexity of different additives.It indicated the relations between different firefighting mechanisms and different additives were competitive.From a large number of experiments the extinct mechanism with water mist by adding additives was concluded and an optimal compounding additive was selected.展开更多
文摘Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively.
文摘The hydration of cement compounds gives hydrated compounds, which allow linking together, the different particles and aggregate of cement, and gives the concrete the required qualities. The dynamics of hydration reactions will depend on many factors, such as the fineness of cement, the ratio w/c during hydration, temperature, mixing technique, and the presence of additives in blended cement, as pozzolan, tuff and slag from blast furnaces. We studied the thermal and kinetic reactions of Portland cement hydration, and its variants with different additions using a differential scanning calorimetric analysis. The parameters from these models of curves allow us to evaluate the enthalpies, and the degree of progression of this blended cement, and finally determine their activation energies. We can say that the hydration of Portland cement is due to a series of reactions as ( C3S,C2S,C3A and C4AF reactions with water) and each of them, has its own kinetic, the experimental measurement of the heat of hydration, allows us to represent the overall kinetics of these reactions values of activation energy, they are therefore apparent and global energy. In our experiments, significant differences in these physicochemical parameters were observed, depending on the additive used.
文摘A series of experiments on the dynamic performance of the HPWH (heat pump water heater) unit with EXV (electronic expansion valve) under different environmental conditions were conducted. The dynamic heating capacity and COP (coefficient of performance) of the HPWH unit under different EXV openings were measured. The effects of the EXV opening on the performance of the HPWH unit were analyzed. Meanwhile, the dynamic performance of the HPWH with EXV was simulated and the results were compared with the experimental one. The experimental results indicate that during heating process, the COP increases firstly and then decreases for a fixed EXV opening, which is in good agreement with the numerical result. For different EXV openings, the COP and heating capacity of the system using larger EXV opening are superior to those using the smaller one in the initial heating stage. While in the late stage, the performance of system using smaller EXV opening is better. It is found that the system performance is improved significantly by changing the EXV opening in the different heating period and the average COP of the HPWH system is increased by 7.6%.
基金supported by National Natural Science Foundation of China(No.51078014)supported by the Fundamental Research Funds for the Central Universities (YWF-10-01-B11)
文摘The effects of fire extinguishment with water mist by adding different additives were studied.Tens of chemical substances (including alkali metal salt,dilution agent and surface active agent) were selected as additives due to their different extinct mechanisms.At first the performance of fire extinguishment with single additive was studied,then the effects of the same kinds of chemical substances under the same mass fraction were compared to study their influences on the fire extinguishment factors,including extinct time,fire temperature and oxygen concentration from which the fire extinct mechanism with additives could be concluded.Based on this the experiments were conducted to study the cooperate effect of the complexity of different additives.It indicated the relations between different firefighting mechanisms and different additives were competitive.From a large number of experiments the extinct mechanism with water mist by adding additives was concluded and an optimal compounding additive was selected.