The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of var...The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.展开更多
The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -...The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -750℃. Heating rate 2 ℃/rain is considered low, while intermediate one covers the range 5 ℃/min and high heating rate is 10℃/min. The controlling parameters studied were the final pyrolysis temperature and the influence of the heating rate as well as type. The heating rate has an important effect on the pyrolysis of oil shale and the amount of residual carbon obtained therefore. It is found that increasing the heating rate and py- rolysis temperature also increases the production of oil and the total weight loss. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through the maximum of different heat- ing rates at different pyrolysis temperatures. Heating rate affected density, oil conversion and oil yield.展开更多
The effects of potato cultivar, frying temperature and slice thickness on oil uptake and sensory quality of potato crisps were investigated in four Kenyan cultivars. Potato tubers were peeled, washed and cut into slic...The effects of potato cultivar, frying temperature and slice thickness on oil uptake and sensory quality of potato crisps were investigated in four Kenyan cultivars. Potato tubers were peeled, washed and cut into slices of thickness 1.0 mm, 1.5 mm and 2.0 mm. Each size was fried at a constant temperature of 170 ℃ for 3-5 minutes. For frying temperature evaluation, the potatoes for all cultivars were cut into a uniform thickness of 1.5 mm and fried at temperatures of 160, 170 and 180 ℃ for 2-5 minutes. Crisps made from the four cultivars differed significantly (P 〈 0.05) in oil absorbed which ranged from 35.12% in Dutch Robyjn to 36.52% in clone 391,691.96. Tuber dry matter differed significantly (P 〈 0.05) among the cultivars ranging from 20.99% in clone 391691.96 to 25.29% in variety Dutch Robyjn. Tuber dry matter content was found to be negatively correlated to oil content of crisps; oil content increased with decrease in dry matter content. For each cultivar, the oil content of crisps differed significantly (P 〈 0.05) with temperatures and was higher at frying temperatures of 160 ℃ and lowest at 180 ℃, respectively. The oil content was significantly (P 〈 0.05) higher in slices of 1.0 mm thick than in slices of 1.5 mm and 2.0 mm; the amount ofoil absorbed decreased with increase in slice thickness. There was significant correlation (P 〈 0.05, r = -0.834) between oil content as determined in the laboratory and sensory scores. Results showed that high dry matter, slice thickness and temperature of frying resulted in reduced oil absorption by crisps during processing.展开更多
The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temp...The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temperature, peat surface temperature, in-closed chamber temperature and peat surface CO2 fluxes were monitored on two adjacent experimental plots. The first experimental plot was on the newly opened peat surface (NOPS) and another was on the eight years planted oil palm land (EPOL). The closed chamber techniques adopted from International Atomic Energy Agency (IAEA) (1993) were implemented to trap CO2 emissions emitted from 24 treatment plots at the 1st, 3rd and 6th months observations. Average CO2 fluxes observed on no LCCs plots in the NOPS site were 61.25 ± 8.98, 33.76 ± 2.92 and 33.75 ± 3.45 g/m2.h, while in the EPOL site were 55.38 ± 15.95, 29.90 ± 5.32 and 27.70 ± 4.62 g/mLh at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 fluxes observed on the planted M. bracteata plots in the NOPS site were 68.2 ± 24.5, 12.88 ± 3.70 and 10.40 ± 1.28 g/m2.h, whereas in the EPOL site were 54.04 ± 6.70, 11.45 ± 2.00 and 9.33 ± 3.49 g/m2.h at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 flux observed on the planted C. mucunoides plots in the NOPS site were 66.5 ± 23.7, 15.41 ± 1.51 and 9.74 ± 2.55 g/m2.h, while in the EPOL site were 47.00 ± 5.00, 9.34 ± 1.23 and 10.52 ± 4.80 g/m2.h at the 1st, 3rd and 6th months, respectively. P-value for the experimental sites was 0.008 (〈 0.05), indicating the significant difference in the level of CO2 fluxes between the sites. P-value for the treatments in the experimental plots was 0.000 (〈 0.05), indicating markedly different level of CO2 fluxes among treatments. P-value for the age ofM. bracteata and C. mucunoides planted on the experimental plots was 0.000 (〈 0.05), indicating the significant difference in the level of CO2 fluxes due to the enhanced LCCs age performing at the increase of shading effects. The comparison of CO2 fluxes among experimental plots shows that planting M. bracteata and C. mucunoides on the peatland could reduce CO2 emission.展开更多
基金Supported by the R&D center of Esfahan refinery (Esfahan,Iran)the technical supports of central laboratory of Esfahan Refinery for total sulfur analysis
文摘The oxidative desulfurization of a real refinery feedstock (i.e.,non-hydrotreated kerosene with total sulfur mass content of 0.16%) with a mixture of hydrogen peroxide and acetic acid was studied.The influences of various operating parameters including reaction temperature (T),acid to sulfur molar ratio (nacid/nS),and oxidant to sulfur molar ratio (nO/nS) on the sulfur removal of kerosene were investigated.The results revealed that an increase in the reaction temperature (T) and nacid/nS enhances the sulfur removal.Moreover,there is an optimum nO/nS related to the reaction temperature and the best sulfur removal could be obtained at nO/nS=8 and 23 for the reaction temperatures of 25 and 60°C,respectively.The maximum observed sulfur removal in the present oxidative desulfurization system was 83.3%.
文摘The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -750℃. Heating rate 2 ℃/rain is considered low, while intermediate one covers the range 5 ℃/min and high heating rate is 10℃/min. The controlling parameters studied were the final pyrolysis temperature and the influence of the heating rate as well as type. The heating rate has an important effect on the pyrolysis of oil shale and the amount of residual carbon obtained therefore. It is found that increasing the heating rate and py- rolysis temperature also increases the production of oil and the total weight loss. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through the maximum of different heat- ing rates at different pyrolysis temperatures. Heating rate affected density, oil conversion and oil yield.
文摘The effects of potato cultivar, frying temperature and slice thickness on oil uptake and sensory quality of potato crisps were investigated in four Kenyan cultivars. Potato tubers were peeled, washed and cut into slices of thickness 1.0 mm, 1.5 mm and 2.0 mm. Each size was fried at a constant temperature of 170 ℃ for 3-5 minutes. For frying temperature evaluation, the potatoes for all cultivars were cut into a uniform thickness of 1.5 mm and fried at temperatures of 160, 170 and 180 ℃ for 2-5 minutes. Crisps made from the four cultivars differed significantly (P 〈 0.05) in oil absorbed which ranged from 35.12% in Dutch Robyjn to 36.52% in clone 391,691.96. Tuber dry matter differed significantly (P 〈 0.05) among the cultivars ranging from 20.99% in clone 391691.96 to 25.29% in variety Dutch Robyjn. Tuber dry matter content was found to be negatively correlated to oil content of crisps; oil content increased with decrease in dry matter content. For each cultivar, the oil content of crisps differed significantly (P 〈 0.05) with temperatures and was higher at frying temperatures of 160 ℃ and lowest at 180 ℃, respectively. The oil content was significantly (P 〈 0.05) higher in slices of 1.0 mm thick than in slices of 1.5 mm and 2.0 mm; the amount ofoil absorbed decreased with increase in slice thickness. There was significant correlation (P 〈 0.05, r = -0.834) between oil content as determined in the laboratory and sensory scores. Results showed that high dry matter, slice thickness and temperature of frying resulted in reduced oil absorption by crisps during processing.
文摘The aim of this research was to know the impact of planting leguminous cover crops (LCCs) of Mucuna bracteata and Calopogonium mucunoides in oil palm plantation on peatland on reducing CO2 emissions. Atmosphere temperature, peat surface temperature, in-closed chamber temperature and peat surface CO2 fluxes were monitored on two adjacent experimental plots. The first experimental plot was on the newly opened peat surface (NOPS) and another was on the eight years planted oil palm land (EPOL). The closed chamber techniques adopted from International Atomic Energy Agency (IAEA) (1993) were implemented to trap CO2 emissions emitted from 24 treatment plots at the 1st, 3rd and 6th months observations. Average CO2 fluxes observed on no LCCs plots in the NOPS site were 61.25 ± 8.98, 33.76 ± 2.92 and 33.75 ± 3.45 g/m2.h, while in the EPOL site were 55.38 ± 15.95, 29.90 ± 5.32 and 27.70 ± 4.62 g/mLh at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 fluxes observed on the planted M. bracteata plots in the NOPS site were 68.2 ± 24.5, 12.88 ± 3.70 and 10.40 ± 1.28 g/m2.h, whereas in the EPOL site were 54.04 ± 6.70, 11.45 ± 2.00 and 9.33 ± 3.49 g/m2.h at the 1st, 3rd and 6th months monitoring, respectively. Average CO2 flux observed on the planted C. mucunoides plots in the NOPS site were 66.5 ± 23.7, 15.41 ± 1.51 and 9.74 ± 2.55 g/m2.h, while in the EPOL site were 47.00 ± 5.00, 9.34 ± 1.23 and 10.52 ± 4.80 g/m2.h at the 1st, 3rd and 6th months, respectively. P-value for the experimental sites was 0.008 (〈 0.05), indicating the significant difference in the level of CO2 fluxes between the sites. P-value for the treatments in the experimental plots was 0.000 (〈 0.05), indicating markedly different level of CO2 fluxes among treatments. P-value for the age ofM. bracteata and C. mucunoides planted on the experimental plots was 0.000 (〈 0.05), indicating the significant difference in the level of CO2 fluxes due to the enhanced LCCs age performing at the increase of shading effects. The comparison of CO2 fluxes among experimental plots shows that planting M. bracteata and C. mucunoides on the peatland could reduce CO2 emission.