The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn...The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn, soybean meal and animal by products based broiler diets. The different processing factors were combined in a 2 x 4 x 4 x 2 factorial arrangement in an eight randomized block consisting of eight production series: two particle sizes (coarse: 1,041 microns and medium: 743 microns), four fat inclusion levels at the mixer (15, 25, 35 and 45 g/kg of feed), four moisture addition levels in the conditioner (0, 7, 14 and 21 g/kg of feed) and two thermal processing treatments (conditioner-pellet press treatment or conditioner-expander-pellet treatment) which resulted in 64 different processed feeds. For the determination of the pellet durability index (PDI), the amount of intact pellets and protein solubility determinations, eight feed samples (replicates) were collected for each treatment. The data were transformed using a variation of Box-Cox transformation in order to fit a normal distribution (p 〉 0.05). Adding moisture up to 21 g/kg of feed in the conditioner improved pellet quality of the diets (p 〈 0.05). Expansion of diets before pelleting improved (P 〈 0.05) PDI and amount of intact pellets by 26% and 31%, respectively, as compared to a simple conditioning-pelleting feed processing. Expander treatment (at 110 ℃) decreased (p 〈 0.05) protein solubility in KOH from 686 g/kg to 643 g/kg total protein as compared to pelleting process (at 80-82 ℃). The amount of intact pellets reduced from 773 g/kg to 746 g/kg of feed (/7 〈 0.05) as particle size increased from medium to coarse grinding. Pellet quality was significantly reduced with fat inclusion levels higher than 35 g/kg of diet.展开更多
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
文摘The present study evaluated the effect of feed particle size, thermal processing, several levels of fat inclusion and moisture addition on pellet quality and protein solubility in potassium hydroxide (KOH) in a corn, soybean meal and animal by products based broiler diets. The different processing factors were combined in a 2 x 4 x 4 x 2 factorial arrangement in an eight randomized block consisting of eight production series: two particle sizes (coarse: 1,041 microns and medium: 743 microns), four fat inclusion levels at the mixer (15, 25, 35 and 45 g/kg of feed), four moisture addition levels in the conditioner (0, 7, 14 and 21 g/kg of feed) and two thermal processing treatments (conditioner-pellet press treatment or conditioner-expander-pellet treatment) which resulted in 64 different processed feeds. For the determination of the pellet durability index (PDI), the amount of intact pellets and protein solubility determinations, eight feed samples (replicates) were collected for each treatment. The data were transformed using a variation of Box-Cox transformation in order to fit a normal distribution (p 〉 0.05). Adding moisture up to 21 g/kg of feed in the conditioner improved pellet quality of the diets (p 〈 0.05). Expansion of diets before pelleting improved (P 〈 0.05) PDI and amount of intact pellets by 26% and 31%, respectively, as compared to a simple conditioning-pelleting feed processing. Expander treatment (at 110 ℃) decreased (p 〈 0.05) protein solubility in KOH from 686 g/kg to 643 g/kg total protein as compared to pelleting process (at 80-82 ℃). The amount of intact pellets reduced from 773 g/kg to 746 g/kg of feed (/7 〈 0.05) as particle size increased from medium to coarse grinding. Pellet quality was significantly reduced with fat inclusion levels higher than 35 g/kg of diet.