The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB...The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.展开更多
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties...Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS2) ribbons and the thermal contact resistance, with which the interracial thermal resistance between few-layer MoS2 and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS2 is around -30 W/(m K), while the estimated interracial thermal resistance is around -2 × 10 -6 m-2 K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interracial thermal resistance of different twodimensional (2D) heterojunctions.展开更多
The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time...The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow' carbon atoms of the FLG and ‘spit' graphite shells at its surface. The tip was carbonized to tungsten carbide(WC, W_2 C and WC_x) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.展开更多
基金Projects(11375112,51472155,11275122)supported by the National Natural Science Foundation of China
文摘The growth interfaces of CdMnTe(CMT) crystals grown by traveling heater method(THM) were studied. Two types of polycrystalline CMT feed ingots synthesized in a traditional rocking furnace and vertical Bridgman(VB) furnace were adopted in THM growth, and the effects of the polycrystalline feed on the growth interface were revealed. The morphology of the growth interface of CMT crystal(CMT2) grown from the feed by vertical Bridgman was smoother with lower curvature compared with that of CMT crystal(CMT1) from the feed by rocking furnace. The radial Mn composition and Te inclusion distribution of the CMT wafers were analyzed and correlated to the growth interface. The Mn segregation along the radial direction and Te inclusion density of CMT2 were lower than those of CMT1. The VB method synthesized polycrystalline feed could improve the growth interface morphology, which is beneficial for decreasing the Te inclusions and Mn segregation in CMT wafers.
基金supported by the National Natural Science Foundation of China(11674245 and 11334007)Shanghai Committee of Science and Technology in China(17142202100 and 17ZR1447900)supported by A*STAR Pharos Funding from the Science and Engineering Research Council of Singapore(Grant No.152 72 00015)
文摘Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems. The bottleneck lies in the challenges in measuring the thermal contact resistance. In this work, we applied electron beam self-heating technique to derive the intrinsic thermal conductivity of suspended Molybdenum Disulfide (MoS2) ribbons and the thermal contact resistance, with which the interracial thermal resistance between few-layer MoS2 and Pt electrodes was calculated. The measured room temperature thermal conductivity of MoS2 is around -30 W/(m K), while the estimated interracial thermal resistance is around -2 × 10 -6 m-2 K/W. Our experiments extend a useful branch in application of this technique for studying thermal properties of suspended layered ribbons and have potential application in investigating the interracial thermal resistance of different twodimensional (2D) heterojunctions.
基金supported by the Program from Ministry of Science and Technology(Grant Nos.2012CB933003,2013CB932600,2013CB934500&2013YQ16055107)the National Natural Science Foundation of China(Grant Nos.11474337,221322304,51172273&51421002)Strategic Priority Research Program B of the Chinese Academy of Sciences of China(Grant No.XDB07030100)
文摘The dynamic behavior of the interface between few layer graphene(FLG) and tungsten metal tips under Joule heating has been studied by in-situ transmission electron microscopy(TEM) method. High-resolution and real-time observations show the tungsten tip ‘swallow' carbon atoms of the FLG and ‘spit' graphite shells at its surface. The tip was carbonized to tungsten carbide(WC, W_2 C and WC_x) after this process. A carbon diffusion mechanism has been proposed based on the diffusion of carbon atoms through the tungsten tip and separation from the surface of the tip. After Joule heating, the initial FLG-metal mechanical contact was transformed to FLG-WCx-W contact, which results in significant improvement on electrical conductivity at the interface.