The effect of SiO2 particles on heat transfer performance of a pulsating heat pipe (PHP) was investigated experi- mentally. DI water was used as the base fluid and contrast medium for the PHP. In order to study and ...The effect of SiO2 particles on heat transfer performance of a pulsating heat pipe (PHP) was investigated experi- mentally. DI water was used as the base fluid and contrast medium for the PHP. In order to study and measure the character, there are SiO2/H20 nanofluids with different concentration and applying with various heating powers during the experiment investigation. According to the experimental result, the high fraction of SiO2/H20 will de- teriorate the performance of PHP compared with DI water, i.e. the thermal resistance and the temperature of evaporation section increases. It is in contrary in the case of low fraction of SiO2/H20. Finally, the comparison of the thermal performances between the normal operation system and the static settlement system is given. It is found that both the thermal resistance of nanofluid PHP and the temperature of the evaporation section increase after standing for a period, and it is the same trend for the temperature fluctuation at the identical heating power for PHP.展开更多
基金supported by NSFC(No.51176008)National Key Technology R&D Program(No.2012 BAB12B02)Jiangsu Key Laboratory of Process Enhancement&New Energy Equipment Technology(Nanjing University of Technology)
文摘The effect of SiO2 particles on heat transfer performance of a pulsating heat pipe (PHP) was investigated experi- mentally. DI water was used as the base fluid and contrast medium for the PHP. In order to study and measure the character, there are SiO2/H20 nanofluids with different concentration and applying with various heating powers during the experiment investigation. According to the experimental result, the high fraction of SiO2/H20 will de- teriorate the performance of PHP compared with DI water, i.e. the thermal resistance and the temperature of evaporation section increases. It is in contrary in the case of low fraction of SiO2/H20. Finally, the comparison of the thermal performances between the normal operation system and the static settlement system is given. It is found that both the thermal resistance of nanofluid PHP and the temperature of the evaporation section increase after standing for a period, and it is the same trend for the temperature fluctuation at the identical heating power for PHP.