Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment ...Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.展开更多
The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the...The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.展开更多
The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption...The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption, greenhouse gas emissions and associated costs. The aim of this study is to determine the energy and cost saving opportunities for truck haulage operations associated with the payload variance in surface mines. The results indicate that there is a non-linear relationship between the payload variance and the fuel consumption, greenhouse gas emissions and associated costs. A correlation model, which is independent of haul road conditions, has been developed between the payload variance and the cost saving using the data from an Australian surface coal mine. The results of analysis for this particular mine show that a significant saving of fuel and greenhouse gas emissions costs is possible if the standard deviation of payload is reduced from the maximum to minimum value.展开更多
Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of an...Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18 cSt at -20 ~C. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased up to 40,000 J/g for 100% BD (BD100) while, light oil calorific value was 45,567 J/g, showing difference of 5,567 J/g (about 12% difference), Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%) and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally, CO2 amounts of BDs were greater than light oil, but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.展开更多
Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products o...Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD.The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel,which could be contributed to the excellent hydrogenation performance of the said catalyst.Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking,larger curvature of MoS2or WS2,and segregated Ni3S2crystals relative to the supported catalyst.This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.展开更多
Hydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand fr...Hydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand from solar or wind power. Gasification, however, can be energy self-sufficient using a recently-patented thermochemical conversion technology known as I-HPG (indirectly-heated pyrolytic gasification). I-HPG produces a tar-free syngas from non-food woody biomass. This means the balance of plant can be small, so the overall system is economical at modest sizes. This makes it possible to produce renewable hydrogen from local agricultural residues; sufficient to create distributed refueling stations wherever there is feedstock. This work describes the specifics of a novel bio-hydrogen refueling station whereby the syngas produced has much of the hydrogen extracted with the remainder powering a generator to provide the electric power to the I-HPG system. Thus the system runs continuously. When paired with another new technology, moderate-pressure storage of hydrogen in porous silicon, there is the potential to also power the refueling operation. Such systems can be operated independently. It is even possible to design an energy self-sufficient farm where all electric power, heat, and hydrogen fuel is produced from the non-food residues of agricultural operations. No water is required, and the carbon footprint is negative, or at least neutral.展开更多
Recently "the hydrocarcking technology aimed at prodigiously boosting jet fuel yield along with improvement of tail-oil quality"developed by the SINOPEC Research Institute of Petroleum Processing(RIPP) has been su...Recently "the hydrocarcking technology aimed at prodigiously boosting jet fuel yield along with improvement of tail-oil quality"developed by the SINOPEC Research Institute of Petroleum Processing(RIPP) has been successfully applied in commercial scale on the 2.0 Mt/a hydrocracking unit at the SINOPEC Yanshan Branch Company, resulting in implementation of triple functions, viz.: boosting the jet fuel yield, reducing the diesel fuel output and improving the tail-oil quality. This technique has brought about obvious economic and environmental benefts, which can provide a mate-rial basis to bridge the demand gap in jet fuel supply at the new Beijing Airport and will serve as a good ex-ample of SINOPEC’s efforts in the area of transforma-tion of production mode, structure adjustment, product quality upgrading and enhancement of economic ben-efts at the refning enterprise.展开更多
基金Project(2006BAJ04A)suppprted by the National Sci-Tech Support Plan,China
文摘Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process(IZVI) and anaerobic filter and biological aerated filter(AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand(COD), ammonia nitrogen(NH3-N) and total nitrogen(TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum(GC/MS) and gel permeation chromatography(GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.
基金the financial support from the National Natural Science Foundation of China(No.2117619)the Shaanxi Province Major Project of Innovation of Science and Technology(No.2008zkc03205,No.2011KTZB03-03-01)
文摘The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.
基金CRC Mining and the University of Queensland for their financial support for this study
文摘The data collected from haul truck payload management systems at various surface mines show that the payload variance is significant and must be considered in analysing the mine productivity, diesel energy consumption, greenhouse gas emissions and associated costs. The aim of this study is to determine the energy and cost saving opportunities for truck haulage operations associated with the payload variance in surface mines. The results indicate that there is a non-linear relationship between the payload variance and the fuel consumption, greenhouse gas emissions and associated costs. A correlation model, which is independent of haul road conditions, has been developed between the payload variance and the cost saving using the data from an Australian surface coal mine. The results of analysis for this particular mine show that a significant saving of fuel and greenhouse gas emissions costs is possible if the standard deviation of payload is reduced from the maximum to minimum value.
文摘Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18 cSt at -20 ~C. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased up to 40,000 J/g for 100% BD (BD100) while, light oil calorific value was 45,567 J/g, showing difference of 5,567 J/g (about 12% difference), Several different fuels including BD20 (biodiesel 20% + light oil 80%), BD50 (biodiesel 50% + light oil 50%), BD100 (biodiesel 100%) and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally, CO2 amounts of BDs were greater than light oil, but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.
基金support of National Natural Science Foundation of China(Grant No.21306106)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2012371812012)China Postdoctoral Science Foundation(Grant No.2012M541941)
文摘Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD.The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel,which could be contributed to the excellent hydrogenation performance of the said catalyst.Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking,larger curvature of MoS2or WS2,and segregated Ni3S2crystals relative to the supported catalyst.This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.
文摘Hydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand from solar or wind power. Gasification, however, can be energy self-sufficient using a recently-patented thermochemical conversion technology known as I-HPG (indirectly-heated pyrolytic gasification). I-HPG produces a tar-free syngas from non-food woody biomass. This means the balance of plant can be small, so the overall system is economical at modest sizes. This makes it possible to produce renewable hydrogen from local agricultural residues; sufficient to create distributed refueling stations wherever there is feedstock. This work describes the specifics of a novel bio-hydrogen refueling station whereby the syngas produced has much of the hydrogen extracted with the remainder powering a generator to provide the electric power to the I-HPG system. Thus the system runs continuously. When paired with another new technology, moderate-pressure storage of hydrogen in porous silicon, there is the potential to also power the refueling operation. Such systems can be operated independently. It is even possible to design an energy self-sufficient farm where all electric power, heat, and hydrogen fuel is produced from the non-food residues of agricultural operations. No water is required, and the carbon footprint is negative, or at least neutral.
文摘Recently "the hydrocarcking technology aimed at prodigiously boosting jet fuel yield along with improvement of tail-oil quality"developed by the SINOPEC Research Institute of Petroleum Processing(RIPP) has been successfully applied in commercial scale on the 2.0 Mt/a hydrocracking unit at the SINOPEC Yanshan Branch Company, resulting in implementation of triple functions, viz.: boosting the jet fuel yield, reducing the diesel fuel output and improving the tail-oil quality. This technique has brought about obvious economic and environmental benefts, which can provide a mate-rial basis to bridge the demand gap in jet fuel supply at the new Beijing Airport and will serve as a good ex-ample of SINOPEC’s efforts in the area of transforma-tion of production mode, structure adjustment, product quality upgrading and enhancement of economic ben-efts at the refning enterprise.