The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip f...The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip footing upon both reinforced and unreinforced clayey slopes were presented.The objectives of this work are to:1) determine the influence of reinforcement on the bearing-capacity of the strip footings adjacent slopes,2) suggest an optimum number of reinforcement and 3) survey the effect of friction angle in clayey soils reinforced by geogrids.The investigations were carried out by varying the edge distance of the footing from slope.Also different numbers of geosynthetic layers were applied to obtaining the maximum bearing capacity and minimum settlement.To achieve the third objective,two different friction angles were used.The results show that the load?settlement behavior and ultimate bearing capacity of footing can be considerably improved by the inclusion of reinforcing layer.But using more than one layer reinforcement,the ultimate bearing capacity does not change considerably.It is also shown that for both reinforced and unreinforced slopes,the bearing capacity increases with an increase in edge distance.In addition,as the soil friction angle is increased,the efficiency of reinforcing reduces.展开更多
A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo...A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.展开更多
The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interacti...The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.展开更多
Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for prope...Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for proper design and construction of geogrid reinforced earth structures. Based on the calibrated model of sand and geogrid, a series of numerical pullout tests are conducted using PFC^(3D) under special considerations of particle angularity and aperture geometry of the geogrid. In this work, interface characteristics regarding the displacement and contact force developed among particles and the deformation and force distribution along the geogrid are all visualized with PFC^(3D) simulations so that new understanding on how geogrid-soil interaction develops under pullout loads can be obtained. Meanwhile, a new variable named fabric anisotropy coefficient is introduced to evaluate the inherent relationship between macroscopic strength and microscopic fabric anisotropy. A correlation analysis is adopted to compare the accuracy between the newly-proposed coefficient and the most commonly used one. Furthermore, additional pullout tests on geogrid with four different joint protrusion heights have been conducted to investigate what extent and how vertical reinforcement elements may result in reinforcement effects from perspectives of bearing resistance contribution, energy dissipation, as well as volumetric response. Numerical results show that both the magnitude and the directional variation of normal contact forces govern the development of macroscopic strength and the reinforcing effects of joint protrusion height can be attributed to the accelerated energy dissipation across the particle assembly and the intensive mobilization of the geogrid.展开更多
The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soi...The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soil properties.The test results of the dynamic earth pressure indicate that the soil reinforced by geogrid is very effective to increase the stiffness of soil,especially in soft soil.The dynamic earth pressure ratio,which is defined as the ratio of dynamic earth pressure to self weight of soils,exponentially decreases as the embankment height increases.The dynamic earth pressure ratio increases up to 80% for soft soils reinforced by both one layer of geogrid in place of no reinforced soils and two layers in place of a single layer of geogrid.展开更多
Model tests and numerical analyses of stepped reinforced retaining wall were performed to investigate the effects of rheology of backfill and creep of geogrids on the long-term performance of the structure.The geogrid...Model tests and numerical analyses of stepped reinforced retaining wall were performed to investigate the effects of rheology of backfill and creep of geogrids on the long-term performance of the structure.The geogrid tensions,soil pressures,wall deformations and foundation pressure were measured during model construction and loading.A visco-elasto-plastic model and an empirical nonlinear visco-elastic model were utilized to simulate the stresses and deformations of geogrid-reinforced earth-retaining wall under long-term loads.By comparing test data with numerical results,it is shown that the foundation pressure distribution is nonlinear,and the lateral constraint of geogrids for backfill can cause a redistribution of foundation pressure.The curve of soil pressure is outside convex at each step initially,and it is close to the distribution for the case of vertical wall subsequently.The variation trend of geogrid tensions at different heights is obtained.Moreover,the failure mechanism and development mode of potential slip surface in retaining wall are proposed.展开更多
One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and crea...One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and creates a load in the normal direction, which is typically a critical load because it can create delamination and can only be withstood if it is small. Another problem is that the structure is difficult to inspect using conventional methods because of limited accessibility. With fiber Bragg grating (FBG), the problem can potentially be solved in structures with a stiffness mismatch. The model used to represent the problem above is a composite stiffened skin with two loading cases: tensile and three-point bending. Additionally, FBG is used to monitor and characterize the delamination caused by both loading cases. Finite element modeling (FEM) with traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. In this research, FBG can successfully monitor and characterize delamination caused by both loading cases in structures that have mismatched stiffnesses. Also, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace a conventional mechanical graph for use in structural health monitoring.展开更多
文摘The effect of geosynthetic reinforcing on bearing capacity of a strip footing resting on georeinforced clayey slopes was investigated.The results of a series of numerical study using finite element analyses on strip footing upon both reinforced and unreinforced clayey slopes were presented.The objectives of this work are to:1) determine the influence of reinforcement on the bearing-capacity of the strip footings adjacent slopes,2) suggest an optimum number of reinforcement and 3) survey the effect of friction angle in clayey soils reinforced by geogrids.The investigations were carried out by varying the edge distance of the footing from slope.Also different numbers of geosynthetic layers were applied to obtaining the maximum bearing capacity and minimum settlement.To achieve the third objective,two different friction angles were used.The results show that the load?settlement behavior and ultimate bearing capacity of footing can be considerably improved by the inclusion of reinforcing layer.But using more than one layer reinforcement,the ultimate bearing capacity does not change considerably.It is also shown that for both reinforced and unreinforced slopes,the bearing capacity increases with an increase in edge distance.In addition,as the soil friction angle is increased,the efficiency of reinforcing reduces.
基金Projects(41962017,51469005)supported by the National Natural Science Foundation of ChinaProject(2017GXNSFAA198170)supported by the Natural Science Foundation in Guangxi Province,China+1 种基金Project supported by the Guangxi University of Science and Technology Innovation Team Support Plan,ChinaProject supported by the High Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning,China。
文摘A series of dynamic model tests that were performed on a geogrid-reinforced square footing are presented.The dynamic(sinusoidal)loading was applied using a mechanical testing and simulation(MTS)electro-hydraulic servo loading system.In all the tests,the amplitude of loading was±160 kPa;the frequency of loading was 2 Hz.To better ascertain the effect of reinforcement,an unreinforced square footing was first tested.This was followed by a series of tests,each with a single layer of reinforcement.The reinforcement was placed at depths of 0.3B,0.6B and 0.9B,where B is the width of footing.The optimal depth of reinforcement was found to be 0.6B.The effect of adopting this value versus the other two depths was quantified.The single layer of geogrid had an effective reinforcement depth of 1.7B below the footing base.The increase of the depth between the topmost geogrid layer and the bottom of the footing(within the range of 0.9B)did not change the failure mode of the foundation.
基金Supported by National Natural Science Foundation of China (No. 50678032)
文摘The interaction between geogrid and soil is crucial for the stability of geogrid-reinforced earth structure. In finite element (FE) analysis, geogrids are usually assumed as beam or truss elements, and the interaction between geogrid and soil is considered as Coulomb friction resistance, which cannot reflect the true stress and displacement developed in the reinlbrcement. And the traditional Lagrangian elements used to simulate soil always become highly distorted and lose accuracy in high-stress blocks. An improved geogrid model that can produce shear resistance and passive resistance and a soil model using the Eulerian technique, in combination with the coupled Eulerian-Lagrangian (CEL) method, are used to analyze the interaction between geogrid and soil of reinforced foundation test in ABAQUS. The stress in the backfill, resistance of geogrid, and settlement of foundation were computed and the results of analysis agree well with the experimental results. This simulation method is of referential value for FE analysis of reinforced earth structure.
基金Projects(51278216,51478201)supported by the National Natural Science Foundation of China
文摘Geogrid has been extensively used in geotechnical engineering practice due to its effectiveness and economy. Deep insight into the interaction between the backfill soil and the geogrid is of great importance for proper design and construction of geogrid reinforced earth structures. Based on the calibrated model of sand and geogrid, a series of numerical pullout tests are conducted using PFC^(3D) under special considerations of particle angularity and aperture geometry of the geogrid. In this work, interface characteristics regarding the displacement and contact force developed among particles and the deformation and force distribution along the geogrid are all visualized with PFC^(3D) simulations so that new understanding on how geogrid-soil interaction develops under pullout loads can be obtained. Meanwhile, a new variable named fabric anisotropy coefficient is introduced to evaluate the inherent relationship between macroscopic strength and microscopic fabric anisotropy. A correlation analysis is adopted to compare the accuracy between the newly-proposed coefficient and the most commonly used one. Furthermore, additional pullout tests on geogrid with four different joint protrusion heights have been conducted to investigate what extent and how vertical reinforcement elements may result in reinforcement effects from perspectives of bearing resistance contribution, energy dissipation, as well as volumetric response. Numerical results show that both the magnitude and the directional variation of normal contact forces govern the development of macroscopic strength and the reinforcing effects of joint protrusion height can be attributed to the accelerated energy dissipation across the particle assembly and the intensive mobilization of the geogrid.
文摘The field tests were carried out to examine the reinforcement effect of a geogrid on various conditions of embankment height,the number of passages of vibratory roller,the number of reinforced layer of geogrid,and soil properties.The test results of the dynamic earth pressure indicate that the soil reinforced by geogrid is very effective to increase the stiffness of soil,especially in soft soil.The dynamic earth pressure ratio,which is defined as the ratio of dynamic earth pressure to self weight of soils,exponentially decreases as the embankment height increases.The dynamic earth pressure ratio increases up to 80% for soft soils reinforced by both one layer of geogrid in place of no reinforced soils and two layers in place of a single layer of geogrid.
基金Supported by National Natural Science Foundation of China (No. 50678032 and No. 90715042)Key Project of Ministry of Education of China (No. 210176)
文摘Model tests and numerical analyses of stepped reinforced retaining wall were performed to investigate the effects of rheology of backfill and creep of geogrids on the long-term performance of the structure.The geogrid tensions,soil pressures,wall deformations and foundation pressure were measured during model construction and loading.A visco-elasto-plastic model and an empirical nonlinear visco-elastic model were utilized to simulate the stresses and deformations of geogrid-reinforced earth-retaining wall under long-term loads.By comparing test data with numerical results,it is shown that the foundation pressure distribution is nonlinear,and the lateral constraint of geogrids for backfill can cause a redistribution of foundation pressure.The curve of soil pressure is outside convex at each step initially,and it is close to the distribution for the case of vertical wall subsequently.The variation trend of geogrid tensions at different heights is obtained.Moreover,the failure mechanism and development mode of potential slip surface in retaining wall are proposed.
文摘One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and creates a load in the normal direction, which is typically a critical load because it can create delamination and can only be withstood if it is small. Another problem is that the structure is difficult to inspect using conventional methods because of limited accessibility. With fiber Bragg grating (FBG), the problem can potentially be solved in structures with a stiffness mismatch. The model used to represent the problem above is a composite stiffened skin with two loading cases: tensile and three-point bending. Additionally, FBG is used to monitor and characterize the delamination caused by both loading cases. Finite element modeling (FEM) with traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. In this research, FBG can successfully monitor and characterize delamination caused by both loading cases in structures that have mismatched stiffnesses. Also, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace a conventional mechanical graph for use in structural health monitoring.