Over the past 2 decades,tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory.The present study aims at constructing plastic/damage loading funct...Over the past 2 decades,tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory.The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states.Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian,cylindrical,mixed cylindrical-Cartesian,and other forms,and the homogeneity of loading functions discussed.It is found that under certain supplementary conditions from physical meanings,an unambiguous definition of the cohesion in a strength criterion,which is demanded in an elastoplastic damage model,is usually available in an explicit or implicit form,and in each case the loading function is still homogeneous.To apply and validate the presented theory,we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete,and their performances in triaxial compression prove to have improved significantly.展开更多
基金supported by the National Natural Science Foundation of China-National Science Foundation Joint Project(Grant No.51261120374)the National Natural Science Foundation of China(Grant Nos.51108336 and 51378377)
文摘Over the past 2 decades,tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory.The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states.Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian,cylindrical,mixed cylindrical-Cartesian,and other forms,and the homogeneity of loading functions discussed.It is found that under certain supplementary conditions from physical meanings,an unambiguous definition of the cohesion in a strength criterion,which is demanded in an elastoplastic damage model,is usually available in an explicit or implicit form,and in each case the loading function is still homogeneous.To apply and validate the presented theory,we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete,and their performances in triaxial compression prove to have improved significantly.