The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and f...The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.展开更多
This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressur...This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.展开更多
The process of strength-power training and the subsequent adaptation is a multi-factorial process. These factors range from the genetics and morphological characteristics of the athlete to how a coach selects, orders,...The process of strength-power training and the subsequent adaptation is a multi-factorial process. These factors range from the genetics and morphological characteristics of the athlete to how a coach selects, orders, and doses exercises and loading patterns. Consequently, adaptation from these training factors may largely relate to the mode of delivery, in other words, programming tactics. There is strong evidence that the manner and phases in which training is presented to the athlete can make a profound difference in performance outcome. This discussion deals primarily with block periodization concepts and associated methods of programming for strength-power training within track and field. 2015 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport.展开更多
During the start-up and shut-down phase of reciprocating compressors, the loads on all components of driven train system are very high. In this paper a method for calculating the forces on coupling, e-motor, crank sha...During the start-up and shut-down phase of reciprocating compressors, the loads on all components of driven train system are very high. In this paper a method for calculating the forces on coupling, e-motor, crank shaft as well other components of the system will be described. The modelling of the electrical induction motor, coupling, crank shaft, damper as well as the compressor resistance torque are extremely important in simulating start-up and shut-down of reciprocating compressor. Furthermore the switching torque of the electrical motor and the instantaneous moment of inertia of the reciprocating compressor crank gear are important as well. The transient start-up and shut-down process under loaded and unloaded conditions is described using a non-linear differential equation for driven train system: E-motor--coupling--flywheel--reciprocating compressor--damper. Shaft torsional moments on the drive train and especially on the coupling, whether elastic or stiff, can then only be calculated using numerical simulation. This paper will describe some of the key elements in modelling, simulating and measurements of drive train start-up and shut-down carried out on already operational piston compressor units.展开更多
In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time i...In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang(2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method(FVM).The numerical results indicate that there is intensive interaction between oceean wave, caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline.展开更多
基金Projects 50534040 supported by the National Natural Science Foundation of ChinaBK2007040 by the Natural Science Foundation of Jiangsu ProvinceCX08B_103Z by the Post Graduate Research Projects of Jiangsu Province
文摘The effect of test methods and stress paths on the experimental value of the coefficient of earth pressure at rest, K0, was investigated under high pressures. The results indicate that the rigid pressure chamber and flexible lateral confining pressure medium method gives a stress ratio at the initial stage that is not the real K0. Moreover, K0 increases during the loading process becoming greater at high pressures. In the unloading process, however, K0 increases only at the initial stage but decreases thereafter. In addition, the incremental magnitude definition, K0=dσ3/dσ1, gives higher values than the total magnitude definition, K0=σ3/σ1, under loading. This is also true during initial stages of unloading. The experiment results also indicate that earth pressure at rest in deep and thick soils can be estimated by a power function of axial and confining pressures. It is necessary to choose the appropriate Kn to avoid some accidents.
基金supported by the National Basic Research Program of China (No. 2012CB723103)the Ministry of Education Innovation Team of China (No. IRT1235)+2 种基金the State Key Laboratory Cultivation Base for Gas Geology and Gas Control of Henan Polytechnic University of China (No. WS2012A01)the Provincial Open Laboratory Fund of Minal Materials Key disciplines of China (No. MEM13-10)China Postdoctoral Science Foundation (No. 2014M552003)
文摘This study developed the equipment for thermo-fluid–solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded methane-containing coal has been studied under the conditions of different confining pressures and pore pressures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.
文摘The process of strength-power training and the subsequent adaptation is a multi-factorial process. These factors range from the genetics and morphological characteristics of the athlete to how a coach selects, orders, and doses exercises and loading patterns. Consequently, adaptation from these training factors may largely relate to the mode of delivery, in other words, programming tactics. There is strong evidence that the manner and phases in which training is presented to the athlete can make a profound difference in performance outcome. This discussion deals primarily with block periodization concepts and associated methods of programming for strength-power training within track and field. 2015 Production and hosting by Elsevier B.V. on behalf of Shanghai University of Sport.
文摘During the start-up and shut-down phase of reciprocating compressors, the loads on all components of driven train system are very high. In this paper a method for calculating the forces on coupling, e-motor, crank shaft as well other components of the system will be described. The modelling of the electrical induction motor, coupling, crank shaft, damper as well as the compressor resistance torque are extremely important in simulating start-up and shut-down of reciprocating compressor. Furthermore the switching torque of the electrical motor and the instantaneous moment of inertia of the reciprocating compressor crank gear are important as well. The transient start-up and shut-down process under loaded and unloaded conditions is described using a non-linear differential equation for driven train system: E-motor--coupling--flywheel--reciprocating compressor--damper. Shaft torsional moments on the drive train and especially on the coupling, whether elastic or stiff, can then only be calculated using numerical simulation. This paper will describe some of the key elements in modelling, simulating and measurements of drive train start-up and shut-down carried out on already operational piston compressor units.
基金the financial support from EPSRC #EP/ G006482/1the funding support of Oversea Research Student Award from Scottish Government, UK
文摘In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang(2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method(FVM).The numerical results indicate that there is intensive interaction between oceean wave, caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline.