Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×...Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.展开更多
Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading r...Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading rate on the creep behavior of a Ti_(40)Zr_(10)Cu_(47)Sn_(3)(at.%)BMG at ambient temperature was investigated using nanoindentation and molecular dynamic simulation.Results indicate that at low loading rates,many serrations appear in loading stage,leading to inhomogeneous serrated flow in the creep stage.When the loading rate is high enough,the creep deformation tends to be homogeneous.The related mechanism responsible for the rate-dependent creep behavior is attributed to the number of pre-existing major shear bands which is influenced significantly by the loading rate.展开更多
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Beijing Natural Science Foundation,China
文摘Room-temperature mechanical properties of Cu50Zr40Ti10-xNix(0≤x≤4,mole fraction,%) bulk metallic glasses (BMG) with aspect ratios in the range of 1:1-2.5:1 and loading rates in the range of1×10^-5-1×10^-2s^-1were systematically investigated by room-temperatureuniaxialcompression test.In the condition of an aspect ratio of 1:1, the superplasticity can be clearly observed for Cu50Zr40Ti10BMG when the loading rate is1×10^-4s^-1, while for Cu50Zr40Ti10-xNix(x=1-3, mole fraction, %) BMGs when the loading rate is1×10^-2s^-1. The plastic strain (εp), yielding strength (σy) and fracture strength (σf) of the studied Cu-based BMGs significantly depend on the aspect ratio and the loading rate. In addition, theσyof the studied Cu-based BMGs with an aspect ratio of 1:1 is close to the σfof those with the other aspect ratios when the loading rate is1×10^-2s^-1. The mechanism for the mechanical response to the loading rate and the aspect ratiowas also discussed.
基金supported by the National Key Research and Development Program of China(No.2016YFB1100103)the National Natural Science Foundation of China(No.51771233)+2 种基金Key Research and Development Program of Hunan Province,China(No.2016JC2003)China Postdoctoral Science Foundation(No.2018M633164)Fundamental Research Funds for the Central Universities of Central South University,China(Nos.2018ZZTS127,CX20190190,2019ZZTS134)。
文摘Creep deformation can be classified as homogeneous flow and inhomogeneous flow in bulk metallic glass(BMG).In order to understand the conversion conditions of the two types of creep deformation,the effect of loading rate on the creep behavior of a Ti_(40)Zr_(10)Cu_(47)Sn_(3)(at.%)BMG at ambient temperature was investigated using nanoindentation and molecular dynamic simulation.Results indicate that at low loading rates,many serrations appear in loading stage,leading to inhomogeneous serrated flow in the creep stage.When the loading rate is high enough,the creep deformation tends to be homogeneous.The related mechanism responsible for the rate-dependent creep behavior is attributed to the number of pre-existing major shear bands which is influenced significantly by the loading rate.