Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM d...Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM dehalogenase remain unexplored.In order to gain a deeper understanding of the binding sites and dissociation pathways of dichloromethane(DCM)and glutathione(GSH)from the DCM dehalogenase,random accelerated molecular dynamics(RAMD)simulations were performed,in which DCM and GSH were forced to leave the active site.The protein structure was predicted using Alphafold2,and the conformations of GSH and DCM in the binding pocket were predicted by docking.A long equilibrium simulation was conducted to validate the structure of the complex.The results show that GSH is most commonly observed in three main pathways,one of which is more important than the other two.In addition,DCM was observed to escape along a unique pathway.The key residues and protein helices of each pathway were identified.The results can provide a theoretical foundation for the subsequent dissociation mechanism of DCM dehalogenase.展开更多
Molecular dynamics simulation has emerged as a powerful computational tool for studying biomolecules as it can provide atomic insights into the conformational transitions involved in biological functions.However,when ...Molecular dynamics simulation has emerged as a powerful computational tool for studying biomolecules as it can provide atomic insights into the conformational transitions involved in biological functions.However,when applied to complex biological macromolecules,the conformational sampling ability of conventional molecular dynamics is limited by the rugged free energy landscapes,leading to inherent timescale gaps between molecular dynamics simulations and real biological processes.To address this issue,several advanced enhanced sampling methods have been proposed to improve the sampling efficiency in molecular dynamics.In this review,the theoretical basis,practical applications,and recent improvements of both constraint and unconstrained enhanced sampling methods are summarized.Furthermore,the combined utilizations of different enhanced sampling methods that take advantage of both approaches are also briefly discussed.展开更多
The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on...The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.展开更多
Molecular dynamics simulations are performed to investigate the deformation behavior of nanocrystalline Ni with pre-twin atom structure.The simulation sample is composed of four grains with average size 12 nm.The simu...Molecular dynamics simulations are performed to investigate the deformation behavior of nanocrystalline Ni with pre-twin atom structure.The simulation sample is composed of four grains with average size 12 nm.The simulation technique of isobaric-isothermal ensemble(NPT) with high pressure is applied to obtain a sample with two circle twins.Under uniaxial tensile and shear loading,as well as different detwinning deformation behaviors are observed.Under uniaxial tension the detwinning deformation is induced by the event of grain growth,and it is supported by local energy analysis.Under the shear loading the detwinning deformation is related to the loading rate.The results show that there may be a critical shear rate.As the shear rate is sufficiently high the circle twin is found to be failed;as the shear rate is less than that rate,the size of circle twin become smaller and gradually approach a constant value.Our simulation results are in good agreement with experiment observation.展开更多
In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed fro...In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed from 10 to 2000 m/s, and the microstructure's evolution from a crystalline state to an amorphous state was studied. At the low machining velocity, dislocations were generated from the surface in front of the tool, and the immobile dislocation deduced by the cross slip of dislocation was observed. At the high machining velocity, no crystal dislocation nucleated, but instead disorder atoms were found near the tool. Temperature near the tool region increased with the increasing machining velocities, and the temperature had an important effect on the phase transition of the crystal structure.展开更多
基金National Natural Science Foundation of China(22073030)the Oriental Scholars of Shanghai Universities。
文摘Dichloromethane(DCM)dehalogenase stands as a crucial enzyme implicated in the degradation of methylene chloride across diverse environmental and biological contexts.However,the unbinding pathways of ligands from DCM dehalogenase remain unexplored.In order to gain a deeper understanding of the binding sites and dissociation pathways of dichloromethane(DCM)and glutathione(GSH)from the DCM dehalogenase,random accelerated molecular dynamics(RAMD)simulations were performed,in which DCM and GSH were forced to leave the active site.The protein structure was predicted using Alphafold2,and the conformations of GSH and DCM in the binding pocket were predicted by docking.A long equilibrium simulation was conducted to validate the structure of the complex.The results show that GSH is most commonly observed in three main pathways,one of which is more important than the other two.In addition,DCM was observed to escape along a unique pathway.The key residues and protein helices of each pathway were identified.The results can provide a theoretical foundation for the subsequent dissociation mechanism of DCM dehalogenase.
基金supported by the National Natural Science Foundation of China(No.31700647,No.21625302,and No.21573217)
文摘Molecular dynamics simulation has emerged as a powerful computational tool for studying biomolecules as it can provide atomic insights into the conformational transitions involved in biological functions.However,when applied to complex biological macromolecules,the conformational sampling ability of conventional molecular dynamics is limited by the rugged free energy landscapes,leading to inherent timescale gaps between molecular dynamics simulations and real biological processes.To address this issue,several advanced enhanced sampling methods have been proposed to improve the sampling efficiency in molecular dynamics.In this review,the theoretical basis,practical applications,and recent improvements of both constraint and unconstrained enhanced sampling methods are summarized.Furthermore,the combined utilizations of different enhanced sampling methods that take advantage of both approaches are also briefly discussed.
基金the National Natural Science Foundation of China(No.12162010)the Science Technology Base and Talent Special Project of Guangxi,China(No.AD19245143)Natural Science Foundation of Guangxi,China(No.2021GXNSFAA220087).
文摘The molecular dynamics(MD)model ofα-Al_(2)O_(3) nanowires in bending is established by using LAMMPS to calculate the atomic stress and strain at different loading rates in order to study the effect of loading rate on the bending mechanical behaviors of theα-Al_(2)O_(3) nanowires.Research results show that the maximum surface stress−rotation angle curves ofα-Al_(2)O_(3) nanowires at different loading rates are all divided into three stages of elastic deformation,plastic deformation and failure,where the elastic limit point can be determined by the curve symmetry during loading and unloading cycle.The loading rate has great influence on the plastic deformation but little on the elastic modulus ofα-Al_(2)O_(3) nanowires.When the loading rate is increased,the plastic deformation stage is shortened and the material is easier to fail in brittle fracture.Therefore,the elastic limit and the strength limit(determined by the direct and indirect MD simulation methods)are closer to each other.The MD simulation result ofα-Al_(2)O_(3) nanowires is verified to be valid by the good agreement with the improved loop test results.The direct MD method becomes an effective way to determine the elastic limit and the strength limit of nanoscale whiskers failed in brittle or ductile fracture at arbitrary loading rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11021262,11172303 and 11132011)National Basic Research Program of China (Grant No. 2012CB937500)
文摘Molecular dynamics simulations are performed to investigate the deformation behavior of nanocrystalline Ni with pre-twin atom structure.The simulation sample is composed of four grains with average size 12 nm.The simulation technique of isobaric-isothermal ensemble(NPT) with high pressure is applied to obtain a sample with two circle twins.Under uniaxial tensile and shear loading,as well as different detwinning deformation behaviors are observed.Under uniaxial tension the detwinning deformation is induced by the event of grain growth,and it is supported by local energy analysis.Under the shear loading the detwinning deformation is related to the loading rate.The results show that there may be a critical shear rate.As the shear rate is sufficiently high the circle twin is found to be failed;as the shear rate is less than that rate,the size of circle twin become smaller and gradually approach a constant value.Our simulation results are in good agreement with experiment observation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11132011,11021262 and 11172303)the National Basic Research Program of China("973"Project)(Grant No.2012CB937500)
文摘In this study, molecular dynamics simulations were carried out to study the effect of machining velocities on the mechanism of chip formation in nano-metric copper. A wide range of cutting velocities was performed from 10 to 2000 m/s, and the microstructure's evolution from a crystalline state to an amorphous state was studied. At the low machining velocity, dislocations were generated from the surface in front of the tool, and the immobile dislocation deduced by the cross slip of dislocation was observed. At the high machining velocity, no crystal dislocation nucleated, but instead disorder atoms were found near the tool. Temperature near the tool region increased with the increasing machining velocities, and the temperature had an important effect on the phase transition of the crystal structure.