The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and...The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and big heat loads. The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange. Therefore, to solve these prob- lems, we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system. Through numerical cal- culations we will simulate temperature fields, pressure fields and velocity fields under different air sup- ply temperatures, as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to find the proper layout and number of radiators that meet well- head anti-frost requirements from our simulation results, in order to provide guidelines for a practical engineering design. Tests on the Zhangshuanglou auxiliary shaft wellhead shows good, look promising and appear to resolve successfully the problem of high energy consumption and high pollution of well- head heating by a coal-fired boiler.展开更多
The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technolog...The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.展开更多
The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. Th...The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
Pulverized coal-fired(PCF) boilers were first and foremost intended to fire pulverized hard or brown coal. However, biomass co-firing has become a fairly common practice in the Polish power generation system and many ...Pulverized coal-fired(PCF) boilers were first and foremost intended to fire pulverized hard or brown coal. However, biomass co-firing has become a fairly common practice in the Polish power generation system and many existing boilers have been modernized to serve this purpose. This paper presents calculations of the coefficient of thermal efficiency of the boiler heating surfaces and of the time needed for complete reconstruction of deposits on the second-stage steam reheater(RHII) of an OP-380 boiler with the output of 380×10~3 kg/h. The boiler was equipped with a purpose-designed installation of direct feeding of biomass. The main co-fired fuels were wood and sunflower husk pellets. Intense formation of deposits on the steam reheater tubes and problems related to a reduction in the diameters of the tubes were identified during the power unit operation.展开更多
A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compr...A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compressive total stresses in a solid can not exceed the allowable value during the entire process.The method can be used for any construction element of a simple or complicated geometry.In this method,material properties of solids can be assumed as constant or temperature dependent.The method will be implemented for the heating operation of an outlet header.This construction element is mounted in supercritical power plants.The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p_w=26.5 MPa and the steam working temperature of T_w=554℃.The results obtained from the proposed method will be compared with the calculations according to TRD 301-German boiler code.展开更多
基金the National Basic Research Program of China (No.2006CB202200)the National Major Project of the Ministry of Education (No. 304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0656)
文摘The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and big heat loads. The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange. Therefore, to solve these prob- lems, we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system. Through numerical cal- culations we will simulate temperature fields, pressure fields and velocity fields under different air sup- ply temperatures, as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to find the proper layout and number of radiators that meet well- head anti-frost requirements from our simulation results, in order to provide guidelines for a practical engineering design. Tests on the Zhangshuanglou auxiliary shaft wellhead shows good, look promising and appear to resolve successfully the problem of high energy consumption and high pollution of well- head heating by a coal-fired boiler.
文摘The main technologies for reducing flue gas heat loss of pulverized coal-fired boilers are introduced, and the suitability of these technologies for boiler operation and the principles for selection of these technologies are explored. The main conclusions are: 1) the non-equilibrium control over flue gas flow rates at the inlet of the air heater and the reversal rotation of the air heater rotator should be popularized as regular technologies in large boilers; 2) increasing the area of the air heater to reduce the flue gas heat loss in pulverized coal-fired boilers should be the top option and increasing the area of the economizer be the next choice; 3) low- pressure economizer technology could save energy under special conditions and should be compared with the technology of increasing economizer area in terms of technical economics when the latter is feasible; 4) the hot primary air heater is only suitable to the pnlvefizing system with a large amount of cold air mixed.
文摘The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
文摘Pulverized coal-fired(PCF) boilers were first and foremost intended to fire pulverized hard or brown coal. However, biomass co-firing has become a fairly common practice in the Polish power generation system and many existing boilers have been modernized to serve this purpose. This paper presents calculations of the coefficient of thermal efficiency of the boiler heating surfaces and of the time needed for complete reconstruction of deposits on the second-stage steam reheater(RHII) of an OP-380 boiler with the output of 380×10~3 kg/h. The boiler was equipped with a purpose-designed installation of direct feeding of biomass. The main co-fired fuels were wood and sunflower husk pellets. Intense formation of deposits on the steam reheater tubes and problems related to a reduction in the diameters of the tubes were identified during the power unit operation.
文摘A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compressive total stresses in a solid can not exceed the allowable value during the entire process.The method can be used for any construction element of a simple or complicated geometry.In this method,material properties of solids can be assumed as constant or temperature dependent.The method will be implemented for the heating operation of an outlet header.This construction element is mounted in supercritical power plants.The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p_w=26.5 MPa and the steam working temperature of T_w=554℃.The results obtained from the proposed method will be compared with the calculations according to TRD 301-German boiler code.