强化学习使用马尔可夫决策过程的形式化框架,使用状态、动作和奖励定义学习型智能体与环境的交互过程。多智能体强化学习存在联合动作数随智能体个数的增加呈指数级增长的问题。为缓解此问题,提出一种基于动作采样的Q学习(action-sampli...强化学习使用马尔可夫决策过程的形式化框架,使用状态、动作和奖励定义学习型智能体与环境的交互过程。多智能体强化学习存在联合动作数随智能体个数的增加呈指数级增长的问题。为缓解此问题,提出一种基于动作采样的Q学习(action-sampling based Q-learning,ASQ)算法。该算法采用集中训练-分散执行的框架,在集中训练阶段更新联合动作Q值时并没有遍历所有联合动作Q值,而只对部分联合动作Q值进行采样。在动作选择和执行阶段,每个智能体又独立选择动作,有效减少了学习阶段的计算量。实验结果表明,该算法能够以100%的成功率学习到最优联合策略。展开更多
Q-learning作为一种经典的强化学习算法,其在离散状态下存在计算量高、收敛速度慢等问题。Speedy Q-learning是Q-learning的变种,目的是解决Q-learning算法收敛速度慢问题。为解决多智能体强化学习中“维数灾”问题,在Speedy Q-learnin...Q-learning作为一种经典的强化学习算法,其在离散状态下存在计算量高、收敛速度慢等问题。Speedy Q-learning是Q-learning的变种,目的是解决Q-learning算法收敛速度慢问题。为解决多智能体强化学习中“维数灾”问题,在Speedy Q-learning算法的基础上提出了一种基于动作采样的(action sampling based on Speedy Q-learning,ASSQ)算法。该算法采用集中训练-分散执行(centralized training with decentralized execution,CTDE)的框架,将上一迭代步更新后的Q值作为下一状态的最大Q值,有效降低了Q值的比较次数,整体上提升了算法的收敛速度。为减少学习阶段计算量,算法在集中训练阶段求取下一状态最大Q值时,并没有遍历所有联合动作Q值,而只在联合动作空间上进行部分采样。在动作选择和执行阶段,每个智能体又根据学习到的策略独立选择动作,从而有效提高了算法的学习效率。通过在目标运输任务上验证,ASSQ算法能够以100%的成功率学习到最优联合策略,且计算量明显少于Q-learning算法。展开更多
在传感器网络目标锁定过程中,针对如何保证快速有效锁定目标问题,提出了一种基于动作采样并借助UCB动作选择的多智能体强化学习(ASUCBQ)算法。该方法将多个传感器构建成一个多智能体系统,采用集中训练-分散执行(centralized training wi...在传感器网络目标锁定过程中,针对如何保证快速有效锁定目标问题,提出了一种基于动作采样并借助UCB动作选择的多智能体强化学习(ASUCBQ)算法。该方法将多个传感器构建成一个多智能体系统,采用集中训练-分散执行(centralized training with decentralized execution,CTDE)的框架,在集中训练更新联合动作Q值和UCB值时,并没有遍历所有联合动作,而只对部分联合动作进行采样并求取最大Q值和UCB值。在动作选择和执行阶段,每个传感器又分别选择动作。此外,为避免局部最优情况的发生,该方法借助了基于置信度上界(upper confidence bound,UCB)的动作选择思想,通过对动作值估计的不确定性使传感器去探索更多的动作,通过对探索率的动态调整,更好地实现了强化学习“利用”和“探索”之间的平衡。仿真实验表明:该方法可以有效地锁定传感器网络中的目标,降低了在训练过程中的计算量。展开更多
文摘强化学习使用马尔可夫决策过程的形式化框架,使用状态、动作和奖励定义学习型智能体与环境的交互过程。多智能体强化学习存在联合动作数随智能体个数的增加呈指数级增长的问题。为缓解此问题,提出一种基于动作采样的Q学习(action-sampling based Q-learning,ASQ)算法。该算法采用集中训练-分散执行的框架,在集中训练阶段更新联合动作Q值时并没有遍历所有联合动作Q值,而只对部分联合动作Q值进行采样。在动作选择和执行阶段,每个智能体又独立选择动作,有效减少了学习阶段的计算量。实验结果表明,该算法能够以100%的成功率学习到最优联合策略。
文摘Q-learning作为一种经典的强化学习算法,其在离散状态下存在计算量高、收敛速度慢等问题。Speedy Q-learning是Q-learning的变种,目的是解决Q-learning算法收敛速度慢问题。为解决多智能体强化学习中“维数灾”问题,在Speedy Q-learning算法的基础上提出了一种基于动作采样的(action sampling based on Speedy Q-learning,ASSQ)算法。该算法采用集中训练-分散执行(centralized training with decentralized execution,CTDE)的框架,将上一迭代步更新后的Q值作为下一状态的最大Q值,有效降低了Q值的比较次数,整体上提升了算法的收敛速度。为减少学习阶段计算量,算法在集中训练阶段求取下一状态最大Q值时,并没有遍历所有联合动作Q值,而只在联合动作空间上进行部分采样。在动作选择和执行阶段,每个智能体又根据学习到的策略独立选择动作,从而有效提高了算法的学习效率。通过在目标运输任务上验证,ASSQ算法能够以100%的成功率学习到最优联合策略,且计算量明显少于Q-learning算法。
文摘在传感器网络目标锁定过程中,针对如何保证快速有效锁定目标问题,提出了一种基于动作采样并借助UCB动作选择的多智能体强化学习(ASUCBQ)算法。该方法将多个传感器构建成一个多智能体系统,采用集中训练-分散执行(centralized training with decentralized execution,CTDE)的框架,在集中训练更新联合动作Q值和UCB值时,并没有遍历所有联合动作,而只对部分联合动作进行采样并求取最大Q值和UCB值。在动作选择和执行阶段,每个传感器又分别选择动作。此外,为避免局部最优情况的发生,该方法借助了基于置信度上界(upper confidence bound,UCB)的动作选择思想,通过对动作值估计的不确定性使传感器去探索更多的动作,通过对探索率的动态调整,更好地实现了强化学习“利用”和“探索”之间的平衡。仿真实验表明:该方法可以有效地锁定传感器网络中的目标,降低了在训练过程中的计算量。