Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm su...Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.展开更多
A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations...A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.展开更多
A discrete elemental method was used to study the thickness of conglomerate layer in a full thick seam mining activities under the influence of the law, pointing out the thickness of the conglomerate at different seam...A discrete elemental method was used to study the thickness of conglomerate layer in a full thick seam mining activities under the influence of the law, pointing out the thickness of the conglomerate at different seam mining, and during the destruction and instability of existing state of laws. At 21141 thick seam mining, the face toward the direction of separation between the thick layer of conglomerate rock and the next bit after reaching its maximum capacity due to pull from the bottom of the plastic zone, formed a stratified and hierarchical down collapse. The shape of caving area is a ''triangular block'', the length of the plastic zone and face advancement from the linear fit between the height of the plastic zone and the advancing face is a quadratic function of distance, while the top layer of thick gravel layer is the overall bending subsidence trend. Tilting the direction of the face, a thick gob of collapsed conglomerate layer is formed in the coal gob entity on both sides of the thick conglomerate at the top of the overall fracture morphology performance, thus forming a mutual extrusion of articulated block structure. The instability, separation and balance of the thick conglomerate layer in the hinged block stope stress leads to abnormal occurrence of rock burst induced by face as the major factor in the accident. This research reveals the form of stress distribution in the destroyed layer of the thick conglomerate rock, analyzes the stope law of coupling for the pressure burst behavior law for the mining work face, and the choice of preventive measures to provide a theoretical basis and implementation.展开更多
Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton numbe...Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.展开更多
Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stabilit...Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stability of large-scale rock landslides, in most cases, it is difficult to conduct evaluation or to have accurate evaluations because most of large-scale rock landslides are huge in size, high in slopes, and located in the canyon of mountains, which makes the exploration very difficult and thus hard to get credible data on slip surface form, location, depth and strength. This paper describes the Badi landslide happened along the Lancang River, and systematically introduces methods to analyze and verify large-scale slip surface form using terrain conditions surrounding the large-scale landslide, shape of the slide walls, and development patterns of streams and gully. This paper also introduces ways to obtain strength parameters of slip surface with the soil in the slide zone by using the principles of stress state, principles of gravity compaction, structure regeneration and strength regeneration. It is confirmed that analyzed results to the slip surface are basically consistent with the exploration results. The methods introduced here have been successfully applied to evaluate the stability of Badi large-scale rock landslide and have been applied in engineering practices.展开更多
Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics o...Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.展开更多
The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and ex...The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and exploitation technology of 1151 (3) fully mechanized top coal caving (FMTC) face in Xieqiao colliery. The research's results show that the top coal displacement on the top of FMTC face is apparently larger than those of the middle and the bottom, the top coal begins to move in the front of the face's wall, and the sub-level top coal-rock moves ahead of the low-level top coal-rock, the vertical displacement of top coal-rock increases gradually as the decreasing of distance to face Top coal and overlying strata in vertical direction are always in compressed state in the front of face, then the top coal begins to separate from the overlying strata at the upside of face. The support loading at face is mainly the deformation pressure due to top coal and main roof's movement, and it is not suitable for the FMTC face with traditional support design. Surrounding rock movement of the face is of near-field effect, the surrounding rock deformation is acute greatly near to the face, the ideas of supporting design for the tailentry and headentry should be changed from loading control to deformation control.展开更多
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof over...Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.展开更多
Described the development of an Intrinsically Safe System for continuous monitoring of load and convergence of powered roof supports installed at Iongwall faces. The system developed for monitoring of behavior of a po...Described the development of an Intrinsically Safe System for continuous monitoring of load and convergence of powered roof supports installed at Iongwall faces. The system developed for monitoring of behavior of a powered support in a mechanized Iongwall sublevel caving face. The logging system can be programmed for logging the data from the sensors at different logging intervals ranging from 16 h to 1 ms for logging variation in hydraulic pressures in legs and convergence of the support during progressive face advance. For recording dynamic loads, the data logger can be programmed to start fast logging, say at 10 ms intervals, when the pressure in a leg reaches a pre-specified threshold value, and continue fast logging until the pressure drops below this threshold value. This fast logging automatically stops when the pressure drops below this threshold value.展开更多
It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Sout...It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of ...Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of the face, the top coal is in front of sideabutment pressure concentration increase area at this time, and the top coal horizontaldisplacement increase rapidly.Also analyzed the top coal mechanical properties, and thetop coal under abutment pressure turned into block state.Finally, analyzed the top coalfailure mechanism and the structure of the mechanical model, and also made a theoreticalanalysis of the top coal's ultimate bearing capacity.展开更多
Our study was carried out to assess the level of noise generated and ground vibrations induced during blasting operations at the Ewekoro limestone quarry in Nigeria.To achieve this objective,vibro monitor equipment wa...Our study was carried out to assess the level of noise generated and ground vibrations induced during blasting operations at the Ewekoro limestone quarry in Nigeria.To achieve this objective,vibro monitor equipment was used to take readings related to noise generated and ground vibrations during all blasting operations that took place in the quarry for a period of one month.As well,a digital camera was used to take photographs of residential structures within villages near the quarry.The results obtained indicate that the ground vibration readings fall between 0.5 mm/s and 2.1 mm/s and the noise generated during the blasting operations between 82 dB and 89 dB.These readings when compared with the limits set by FEPA(Federal Environmental Protection Agency) of 5.0 mm/s and 150 dB) all fall within the permissible limits.However the photographs of most structures near the quarry reveal cracks and dilapidated building walls.Recommendations are made on how to sustain and improve current blasting techniques.展开更多
An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a ten...An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.展开更多
Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.B...Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.展开更多
Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeol...Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeological properties. Recently, the Office of Surface Mining, Reclamation and Enforcement(OSMRE) in the USA, has completed a public comment period on a newly proposed rule for the protection of streams and groundwater from adverse impacts of surface and underground mining operations(80 FR 44435). With increased community and regulatory focus on mining operations and their potential to adversely affect streams and groundwater, now there is a greater need for better prediction of the possible effects mining has on both surface and subsurface bodies of water. With mining induced stress and strain within the overburden correlated to changes in the hydrogeological properties of rock and soil, this paper investigates the evaluation of the hydrogeological system within the vicinity of an underground mining operation based on strain values calculated through a surface deformation prediction model. Through accurate modeling of the pre- and post-mining hydrogeological system, industry personnel can better depict mining induced effects on surface and subsurface bodies of water aiding in the optimization of underground extraction sequences while maintaining the integrity of water resources.展开更多
基金The National Natural Science Foundation of China(No.60171006)the National Basic Research Programof China (973 Pro-gram) (No.2005CB724303).
文摘Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.
文摘A major natural hazard associated with LGOM (Legnica-Glogow Copper Mining) mining is the dynamic phenomena occurrence, physically observed as seismic tremors. Some of them generate effects in the form of relaxations or bumps. Long-term observations of the rock mass behaviour indicate that the degree of seismic hazard, and therefore also seismic activity in the LGOM area, is affected by the great depth of the copper deposit, high-strength rocks as well as the ability of rock mass to accumulate elastic energy. In this aspect, the effect of the characteristics of initial stress tensor and the orientation of considered mining panel in regards to its components must be emphasised. The primary objective of this study is to answer the question, which of the factors considered as "influencing" the dynamic phenomena occurrence in copper mines have a statistically significant effect on seismic activity and to what extent. Using the general linear model procedure, an attempt has been made to quantify the impact of different parameters, including the depth of deposit, the presence of goaf in the vicinity of operating mining panels and the direction of mining face advance, on seismic activity based on historical data from 2000 to 2010 concerned with the dynamic phenomena recorded in different mining panels in Rudna mine. The direction of mining face advance as well as the goaf situation in the vicinity of the mining panel are of the greatest interest in the case of the seismic activity in LGOM. It can be assumed that the appropriate manipulation of parameters of mining systems should ensure the safest variant of mining method under specific geological and mining conditions.
基金provided by the National Natural Science Foundation of China (No. 90510002)the Science and Technology Research of the Ministry of Education of China(No. 306008)
文摘A discrete elemental method was used to study the thickness of conglomerate layer in a full thick seam mining activities under the influence of the law, pointing out the thickness of the conglomerate at different seam mining, and during the destruction and instability of existing state of laws. At 21141 thick seam mining, the face toward the direction of separation between the thick layer of conglomerate rock and the next bit after reaching its maximum capacity due to pull from the bottom of the plastic zone, formed a stratified and hierarchical down collapse. The shape of caving area is a ''triangular block'', the length of the plastic zone and face advancement from the linear fit between the height of the plastic zone and the advancing face is a quadratic function of distance, while the top layer of thick gravel layer is the overall bending subsidence trend. Tilting the direction of the face, a thick gob of collapsed conglomerate layer is formed in the coal gob entity on both sides of the thick conglomerate at the top of the overall fracture morphology performance, thus forming a mutual extrusion of articulated block structure. The instability, separation and balance of the thick conglomerate layer in the hinged block stope stress leads to abnormal occurrence of rock burst induced by face as the major factor in the accident. This research reveals the form of stress distribution in the destroyed layer of the thick conglomerate rock, analyzes the stope law of coupling for the pressure burst behavior law for the mining work face, and the choice of preventive measures to provide a theoretical basis and implementation.
基金Supported by the National Natural Science Foundation of China(11572357,11602077)
文摘Bubble motions and bubble-wall interactions in stagnant liquid were experimentally investigated by high-speed CCD and PIV technique with the main feature parameters such as E?tv?s numbers Eo = 0.98–1.10, Morton number Mo = 3.21 × 10^(-9)and Reynolds numbers Re = 180 ~ 190. The effect of bubble injecting frequency and the distance S between the gas injection nozzle and the wall on the statistical trajectory of bubbles, average velocity distribution of flow field and Reynolds shear stress were studied in detail. It was shown that the combination of bubble injecting frequency and the distance S caused different bubble motion forms and hydrodynamic characteristics.When the normalized initial distance was very little, like S*≈ 1.2(here S*= 2S/d_e, and deis the bubble equivalent diameter), bubbles ascended in a zigzag trajectory with alternant structure of high and low speed flow field around the bubbles, and the distribution of positive and negative Reynolds shear stress looked like a blob. With the increase of distance S*, bubbles' trajectory would tend to be smooth and straight from the zigzag curve. Meanwhile, with the increase of bubble injecting frequency, the camber of bubble trajectory at 20<y<60 mm had a slight increase due to the inhibitory effect from the vertical wall. Under larger spacing, such as S*≈ 3.6, the low-frequency bubbles gradually moved away from the vertical plane wall in a straight trajectory and the high-frequency bubbles gradually moved close to the vertical wall in a similar straight trajectory after an unstable camber motion. Under the circumstances, high-speed fluid was mainly distributed in the region between the wall and the bubbles, while the relative large Reynolds shear stress mainly existed in the region far away from the wall.
基金supported by the National Natural Sciences Foundation of China (the Initial Saturation of Pelite and Engineering Gelolgy (Grant No.40372127)
文摘Large-scale rock landslides have huge impacts on various large-scale rock engineering and project operations. They are also important aspects evaluating geological disasters. In the initial evaluations on the stability of large-scale rock landslides, in most cases, it is difficult to conduct evaluation or to have accurate evaluations because most of large-scale rock landslides are huge in size, high in slopes, and located in the canyon of mountains, which makes the exploration very difficult and thus hard to get credible data on slip surface form, location, depth and strength. This paper describes the Badi landslide happened along the Lancang River, and systematically introduces methods to analyze and verify large-scale slip surface form using terrain conditions surrounding the large-scale landslide, shape of the slide walls, and development patterns of streams and gully. This paper also introduces ways to obtain strength parameters of slip surface with the soil in the slide zone by using the principles of stress state, principles of gravity compaction, structure regeneration and strength regeneration. It is confirmed that analyzed results to the slip surface are basically consistent with the exploration results. The methods introduced here have been successfully applied to evaluate the stability of Badi large-scale rock landslide and have been applied in engineering practices.
基金Supported by the National Natural Science Foundation of China (40971275, 50811120111)
文摘Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.
基金National Natural Science Foundation of China(50674003)National Basic Research Program(973)
文摘The change rules of displacement field characteristics of coal seam and tunners surrounding rock were obtained by means of numerical simulation-FLAC^3D and site observation, and according to engineering geology and exploitation technology of 1151 (3) fully mechanized top coal caving (FMTC) face in Xieqiao colliery. The research's results show that the top coal displacement on the top of FMTC face is apparently larger than those of the middle and the bottom, the top coal begins to move in the front of the face's wall, and the sub-level top coal-rock moves ahead of the low-level top coal-rock, the vertical displacement of top coal-rock increases gradually as the decreasing of distance to face Top coal and overlying strata in vertical direction are always in compressed state in the front of face, then the top coal begins to separate from the overlying strata at the upside of face. The support loading at face is mainly the deformation pressure due to top coal and main roof's movement, and it is not suitable for the FMTC face with traditional support design. Surrounding rock movement of the face is of near-field effect, the surrounding rock deformation is acute greatly near to the face, the ideas of supporting design for the tailentry and headentry should be changed from loading control to deformation control.
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.
基金Supported by National Natural Science Fundation of China(50674045)
文摘Similar material simulation test W9-15 101 fully mechanized caving face with was carried out in a geological model of large mining height in the Liuhuanggou Colliery, in Xinjiang Uigur Autonomous Region. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height was studied and show that the roof overlying strata in the stope of a fully mechanized caving face with large mining height can be formed into a stable arch structure; the fracture rock beam is formed resembling a "bond beam", but it has essentially the structure of "multi-span beams" under the big structure of the stable arch. The roof overlying strata movement law in the stope of a fully mechanized caving face with large mining height is similar to that of the common, fully mechanized caving stope, which is determined by the deformation and instability of the structure of "multi-span beams". But because of the differences between the mining heights, the peak pressure in the stope of a fully mechanized caving face with large mining height is smaller while the affected area of abutment pressure is wider in the front of the working face; this is the obvious difference in abutment pressure between the stope of a fully mechanized caving face with large mining height and that of the common.
文摘Described the development of an Intrinsically Safe System for continuous monitoring of load and convergence of powered roof supports installed at Iongwall faces. The system developed for monitoring of behavior of a powered support in a mechanized Iongwall sublevel caving face. The logging system can be programmed for logging the data from the sensors at different logging intervals ranging from 16 h to 1 ms for logging variation in hydraulic pressures in legs and convergence of the support during progressive face advance. For recording dynamic loads, the data logger can be programmed to start fast logging, say at 10 ms intervals, when the pressure in a leg reaches a pre-specified threshold value, and continue fast logging until the pressure drops below this threshold value. This fast logging automatically stops when the pressure drops below this threshold value.
文摘It has been proven that longwall faces can be moved safely and efficiently. However,abutment pressures and poor ground control conditions can halt operations and be hazardous to coal miners. Recently at a mine in Southwestern Pennsylvania,roof material collapsed above shields that created two large voids and caused major challenges for shield recovery. A unique,engineering solution was developed that utilized a modified concrete material to fill the voids,creating stability in the affected area. The many phases of this project included the construction phase,void pumping,cutting out,and bolting of the concrete material. This project eliminated the hazards associated with bolting the recovery face and removing shields in adverse conditions,making it possible for the mine operator to safely complete the longwall move.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
文摘Measuring the top coal movement and abutment pressure about Teaching ThirdMine that belonged to the National Energy Investment and Development.It shows that thetop coal's strong compression occurs 6 m in front of the face, the top coal is in front of sideabutment pressure concentration increase area at this time, and the top coal horizontaldisplacement increase rapidly.Also analyzed the top coal mechanical properties, and thetop coal under abutment pressure turned into block state.Finally, analyzed the top coalfailure mechanism and the structure of the mechanical model, and also made a theoreticalanalysis of the top coal's ultimate bearing capacity.
文摘Our study was carried out to assess the level of noise generated and ground vibrations induced during blasting operations at the Ewekoro limestone quarry in Nigeria.To achieve this objective,vibro monitor equipment was used to take readings related to noise generated and ground vibrations during all blasting operations that took place in the quarry for a period of one month.As well,a digital camera was used to take photographs of residential structures within villages near the quarry.The results obtained indicate that the ground vibration readings fall between 0.5 mm/s and 2.1 mm/s and the noise generated during the blasting operations between 82 dB and 89 dB.These readings when compared with the limits set by FEPA(Federal Environmental Protection Agency) of 5.0 mm/s and 150 dB) all fall within the permissible limits.However the photographs of most structures near the quarry reveal cracks and dilapidated building walls.Recommendations are made on how to sustain and improve current blasting techniques.
基金supported by the National Natural Science Foundation of China (No. 51279187)the High Technology Research and Development Program of China (863 Program, No. 2010AA09Z303)+1 种基金the Fundamental Research Funds for the Central Universities (No.201262005)the Natural Science Foundation of Shandong Province (No. 2009ZRA05080)
文摘An investigation on the dynamic response of a top tensioned riser (TTR) under combined excitation of internal solitary wave, surface wave and vessel motion is presented in this paper. The riser is idealized as a tensioned slender beam with dynamic boundary conditions. The KdV-mKdV equation is chosen to simulate the internal solitary wave, and the vessel motion is analysed by using the method proposed by Sexton. Using finite element method, the governing equation is solved in time domain with Newmark-13 method. The computation programs for solving the differential equations in time domain are compiled and numerical results are obtained, including dimensionless displacement and stress. The action of internal solitary wave on the riser is like a slow powerful impact, and is much larger than those of surface wave and vessel motion. When the riser is under combined excitation, it vibrates at frequencies of both surface wave and vessel motion, and the vibration is dominated by internal solitary wave. As the internal solitary wave crest passes by the centre of the riser, the maximum displacement and stress along the riser occur. Compared to the lower part, the displacement and stress of the riser in the upper part are much larger.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.11002021)the Doctoral Subject Foundation of the Ministry of Education of China(No.20070008012)the National High Technology Research and Development Program(No.2008AA062104)
文摘Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.
基金sponsored by the Appalachian Research Initiative for Environmental Science(ARIES)
文摘Ground movements due to longwall mining operations have the potential to damage the hydrological balance within as well as outside the mine permit area in the form of increased surface ponding and changes to hydrogeological properties. Recently, the Office of Surface Mining, Reclamation and Enforcement(OSMRE) in the USA, has completed a public comment period on a newly proposed rule for the protection of streams and groundwater from adverse impacts of surface and underground mining operations(80 FR 44435). With increased community and regulatory focus on mining operations and their potential to adversely affect streams and groundwater, now there is a greater need for better prediction of the possible effects mining has on both surface and subsurface bodies of water. With mining induced stress and strain within the overburden correlated to changes in the hydrogeological properties of rock and soil, this paper investigates the evaluation of the hydrogeological system within the vicinity of an underground mining operation based on strain values calculated through a surface deformation prediction model. Through accurate modeling of the pre- and post-mining hydrogeological system, industry personnel can better depict mining induced effects on surface and subsurface bodies of water aiding in the optimization of underground extraction sequences while maintaining the integrity of water resources.