针对核电站内部运行复杂,对电网变化敏感,数学模型阶数太多的特点,基于PSCAD(Power Systems Computer Aided Design)电磁暂态仿真平台,建立了能反映核电站内部动力部分功率调节特性和并入电力系统运行过程动态情况的一体化仿真平台。利...针对核电站内部运行复杂,对电网变化敏感,数学模型阶数太多的特点,基于PSCAD(Power Systems Computer Aided Design)电磁暂态仿真平台,建立了能反映核电站内部动力部分功率调节特性和并入电力系统运行过程动态情况的一体化仿真平台。利用PSCAD较强的动态控制能力和丰富的库元件模块,通过仿真分析证明了动力部分所具有的功率调节能力并在核电站外接无穷大系统后分析了负荷跟踪过程中核电站的受干扰能力,验证了模型的正确性和适用性。展开更多
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4...In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).展开更多
This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered...This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
AIM: To introduce a bioimpedance gastric motility mea- surement method based on an electrical-mechanical composite concept and a preliminary clinical application. METHODS: A noninvasive gastric motility measure- men...AIM: To introduce a bioimpedance gastric motility mea- surement method based on an electrical-mechanical composite concept and a preliminary clinical application. METHODS: A noninvasive gastric motility measure- ment method combining electrogastrograrn (EGG) and impedance gastric motility (IGM) test was used. Prelim- inary clinical application studies of patients with func- tional dyspepsia (FD) and gastritis, as well as healthy controls, were carried out. Twenty-eight FD patients (mean age 40.9±9.7 years) and 40 healthy volun- teers (mean age 30.9±7.9 years) were involved. IGM spectrum was measured for both the healthy subjects and FD patients, and outcomes were compared in the FD patients before treatment and 1 wk and 3 wk after treatment. IGM parameters were obtained from 30 erosive gastritis patients (mean age 50.5±13.0 years) and 40 healthy adults, and IGM and EGG results were compared in the gastritis patients before treatment and 1 wk after treatment.RESULTS: There were significant differences in the IGM parameters between the FD patients and healthy subjects, and FD patients had a poorer gastric motility [percentage of normal frequency (PNF) 70.8±25.5 in healthy subjects and 28.3 =t= 16.9 in FD patients, P 〈 0.01]. After 1 wk administration of domperidone 10 mg, tid, the gastric motility of FD patients was not im- proved, although the EGG of the patients had returned to normal. After 3 wk of treatment, the IGM rhythm of the FD patients became normal. There was a significant difference in IGM parameters between the two groups (PNF 70.4:1:25.5 for healthy subjects and 36.1 4- 21.8 for gastritis patients, P 〈 0.05). The EGG rhythm of the gastritis patients returned to normal (frequency insta- bility coefficient 2.22±0.43 before treatment and 1.77 :t: 0.19 one wk after treatment, P 〈 0.05) after 1 wk of treatment with sodium rabeprazole tablets, 10 mg, qd, po, qm, while some IGM parameters showed a tenden- cy toward improvement but had not reached statistical significance. CONCLUSION: The electrical-mechanical composite measurement method showed an attractive clinical appli- cation prospect in gastric motility research and evaluation.展开更多
Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection p...Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection policy of the lead-acid battery, the zinc-air power battery was proposed to solve the problem in this paper. The advantage and the feasibility of developing zinc-air power batteries in China have been illustrated in the paper. And, it is represented that development of electric bicycles powered by the zinc-air power battery also can accelerate this kind of battery's development in other electric vehicles, which is favorable to economic development and environmental protection.展开更多
In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This tech...In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This technique should eliminate electrolytic bubble generation, electrodes wear and fluid propriety modification. All these side phenomena are prevented by considering isolated electrodes. The numerical presented results in this paper demonstrate that continuous MHD pumping is possible with isolated electrodes. The MHD excitation combines a high frequency altering current with a low frequency altering magnetic field. In order to validate our results, two independent theoretical methods for computing flow rate are followed. The two presented independent approaches show that high flow rate is possible even with isolated electrodes. To overcome the problem of dimensioning this kind of pumps, a generic numerical analysis is proposed. Hence, the pump performances as functions of the external parameter are studied and tools to calculate for a given fluid and the optimal high frequency regime are provided.展开更多
This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator co...This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.展开更多
In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to ...In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.展开更多
Electric propulsion is broadly defined as the acceleration of a working fluid for propulsion by electrical heating and/or by electric and magnetic body forces. Compared with chemical propulsion, electric propulsion ha...Electric propulsion is broadly defined as the acceleration of a working fluid for propulsion by electrical heating and/or by electric and magnetic body forces. Compared with chemical propulsion, electric propulsion has the characteristic of higher specific impulse, lower thrust, lighter weight and longer lifetime. So electric propulsion is generally suitable for satellite attitude control, the orbit transfer and raising, orbit correction, resistance compensate, position keeping, reposi- tion, space exploration and interplanetary flight.展开更多
In this paper, we present hands-on experience related to on-going implementation in aircraft of power supply for a wireless sensor network deployed for aerodynamic flight tests. This autonomous battery-free power supp...In this paper, we present hands-on experience related to on-going implementation in aircraft of power supply for a wireless sensor network deployed for aerodynamic flight tests. This autonomous battery-free power supply is capturing, managing and storing primary energy from the environment, using solar light and PV (photovoltaic) cells. For practical purposes, it is also equipped with an auxiliary power input. The specifications are detailed, the general architecture is presented and justified, and test results are discussed.展开更多
One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the ...One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the surface. The solution is then found using this property by distributing "singularities" of unknown strength over discretized portions of the surface: panels. Hence the flow field solution is found by representing the surface by a number of panels, and solving a linear set of algebraic equations to determine the unknown strengths of the singularities. In this paper a Hess-Smith Panel Method is then used to examine the aerodynamics of NACA 4412 and NACA 23015 wind turbine airfoils. The lift coefficient and the pressure distribution are predicted and compared with experimental result for low Reynolds number. Results show a good agreement with experimental data.展开更多
This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusio...This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.展开更多
The hydrogen leakage detection and alarm processing system is established for the fuel cell (FC) power train lab to meet the hydrogen safety demand of the FC performance test and examination for the project named "...The hydrogen leakage detection and alarm processing system is established for the fuel cell (FC) power train lab to meet the hydrogen safety demand of the FC performance test and examination for the project named "Research and Development of the Vehicular Technology for the Fuel Cell City Bus" by Tsinghua University. The established hydrogen safety system includes the hydrogen supply system, hydrogen leakage detection system, alarm processing system, ventilation system, measures against electrostatic, thunder-arresting and explosion-protection, and the strict hydrogen operation rules. In this safety system, the explosion proof catalytic combustion sensors are used to detect the hydrogen leakage and the electrical control system is designed to process the alarm automatically. The hydrogen safety system plays an important role in the performance, examination of the FC and the assuring the personnel' s safety of the fuel cell power train lab.展开更多
The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temp...The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.展开更多
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dy...This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.展开更多
This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advan...This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.展开更多
The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristi...The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.展开更多
A new airfoil shape parameterization method is developed, which extended the Bezier curve to the generalized form with adjustable shape parameters. The local control parameters at airfoil leading and trailing edge reg...A new airfoil shape parameterization method is developed, which extended the Bezier curve to the generalized form with adjustable shape parameters. The local control parameters at airfoil leading and trailing edge regions are enhanced, where have significant effect on the aerodynamic performance of wind turbine. The results show this improved parameterization method has advantages in the fitting characteristics of geometry shape and aero- dynamic performance comparing with other three common airfoil parameterization methods. The new paramete- rization method is then applied to airfoil shape optimization for wind turbine using Genetic Algorithm (GA), and the wind turbine special airfoil, DU93-W-210, is optimized to achieve the favorable C1/Cd at specified flow con- ditions. The aerodynamic characteristic of the optimum airfoil is obtained by solving the RANS equations in computational fluid dynamics (CFD) method, and the optimization convergence curves show that the new para- meterization method has good convergence rate in less number of generations comparing with other methods. It is concluded that the new method not only has well controllability and completeness in airfoil shape representation and provides more flexibility in expressing the airfoil geometry shape, but also is capable to find efficient and op- timal wind turbine airfoil. Additionally, it is shown that a suitable parameterization method is helpful for improv- ing the convergence rate of the optimization algorithm.展开更多
Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to ...Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.展开更多
文摘针对核电站内部运行复杂,对电网变化敏感,数学模型阶数太多的特点,基于PSCAD(Power Systems Computer Aided Design)电磁暂态仿真平台,建立了能反映核电站内部动力部分功率调节特性和并入电力系统运行过程动态情况的一体化仿真平台。利用PSCAD较强的动态控制能力和丰富的库元件模块,通过仿真分析证明了动力部分所具有的功率调节能力并在核电站外接无穷大系统后分析了负荷跟踪过程中核电站的受干扰能力,验证了模型的正确性和适用性。
基金Projects(51161015,51371094)supported by National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).
基金Projects(2018YFB1201801-4,2018YFB1201804-2)supported by National Key R&D Program of China。
文摘This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
基金Supported by The National Natural Science Foundation of China, No. 60471041 and 60901045
文摘AIM: To introduce a bioimpedance gastric motility mea- surement method based on an electrical-mechanical composite concept and a preliminary clinical application. METHODS: A noninvasive gastric motility measure- ment method combining electrogastrograrn (EGG) and impedance gastric motility (IGM) test was used. Prelim- inary clinical application studies of patients with func- tional dyspepsia (FD) and gastritis, as well as healthy controls, were carried out. Twenty-eight FD patients (mean age 40.9±9.7 years) and 40 healthy volun- teers (mean age 30.9±7.9 years) were involved. IGM spectrum was measured for both the healthy subjects and FD patients, and outcomes were compared in the FD patients before treatment and 1 wk and 3 wk after treatment. IGM parameters were obtained from 30 erosive gastritis patients (mean age 50.5±13.0 years) and 40 healthy adults, and IGM and EGG results were compared in the gastritis patients before treatment and 1 wk after treatment.RESULTS: There were significant differences in the IGM parameters between the FD patients and healthy subjects, and FD patients had a poorer gastric motility [percentage of normal frequency (PNF) 70.8±25.5 in healthy subjects and 28.3 =t= 16.9 in FD patients, P 〈 0.01]. After 1 wk administration of domperidone 10 mg, tid, the gastric motility of FD patients was not im- proved, although the EGG of the patients had returned to normal. After 3 wk of treatment, the IGM rhythm of the FD patients became normal. There was a significant difference in IGM parameters between the two groups (PNF 70.4:1:25.5 for healthy subjects and 36.1 4- 21.8 for gastritis patients, P 〈 0.05). The EGG rhythm of the gastritis patients returned to normal (frequency insta- bility coefficient 2.22±0.43 before treatment and 1.77 :t: 0.19 one wk after treatment, P 〈 0.05) after 1 wk of treatment with sodium rabeprazole tablets, 10 mg, qd, po, qm, while some IGM parameters showed a tenden- cy toward improvement but had not reached statistical significance. CONCLUSION: The electrical-mechanical composite measurement method showed an attractive clinical appli- cation prospect in gastric motility research and evaluation.
基金Anhui Exploitation Fund of Person with Ability( 2006Z029).
文摘Electric bicycles powered by lead-acid batteries have developed very fast for several years in China. Because the inconvenience caused by the service performance and the inconsistency to the environmental protection policy of the lead-acid battery, the zinc-air power battery was proposed to solve the problem in this paper. The advantage and the feasibility of developing zinc-air power batteries in China have been illustrated in the paper. And, it is represented that development of electric bicycles powered by the zinc-air power battery also can accelerate this kind of battery's development in other electric vehicles, which is favorable to economic development and environmental protection.
文摘In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This technique should eliminate electrolytic bubble generation, electrodes wear and fluid propriety modification. All these side phenomena are prevented by considering isolated electrodes. The numerical presented results in this paper demonstrate that continuous MHD pumping is possible with isolated electrodes. The MHD excitation combines a high frequency altering current with a low frequency altering magnetic field. In order to validate our results, two independent theoretical methods for computing flow rate are followed. The two presented independent approaches show that high flow rate is possible even with isolated electrodes. To overcome the problem of dimensioning this kind of pumps, a generic numerical analysis is proposed. Hence, the pump performances as functions of the external parameter are studied and tools to calculate for a given fluid and the optimal high frequency regime are provided.
文摘This paper presents some solutions of modem renewable energy system applied actually in dissipation energy source: wind turbine, solar panel battery charge, SSS (support set system), and standby diesel generator cooperated in series, parallel and hybrid system with main energy system. Its solution enable obtain independent individual energy source in different work exploitations. One of problems concerned with alternative energy source is changes of output voltages and output power dependence of climatic conditions. Possible solution is application of decoupled adjustable speed generation system in renewable energy generation. The decoupled generation system consists of: alternative energy source, internal combustion engine drives permanent magnet generator and DC/AC, or AC/AC converter. Performance of single decoupled generation set is discussed supported by results of laboratory tests. To provide high quality voltage is applied an additional energy storage, made from super capacitor and bidirectional DC/DC convert. Such system performs very stiff voltage in any load condition. Integration of solar battery panels or renewable wind energy system is provided via DC link of the variable speed decoupled autonomous generation system. Results of computer simulation and laboratory experiments are presented in the paper.
文摘In utility power system, electricity demand is being covered largely by fossil fueled power generation, which contributes high level of GHG (greenhouse gas) emission and causes global warming worldwide. In order to reduce GHG emission level, most of the countries in the world targeting towards green energy that is power generation from RE (renewable energy) sources. In this paper, it is considered to study prospects of RE sources in particular, solar and wind in Victoria State which are abundant as compared to other sources of renewable. The wind and solar energy feasibility study and sensitivity analysis has been done for Victoria with the aid of HOMER (hybrid optimization model of electric renewable) simulation software. From the study, it has clearly evicted that wind energy combinational HPS (hybrid power system) has more contribution, and high potential than solar PV (photovoltaic) systems for a particular location. This study also investigates the influences of energy storage in the proposed HPS.
文摘Electric propulsion is broadly defined as the acceleration of a working fluid for propulsion by electrical heating and/or by electric and magnetic body forces. Compared with chemical propulsion, electric propulsion has the characteristic of higher specific impulse, lower thrust, lighter weight and longer lifetime. So electric propulsion is generally suitable for satellite attitude control, the orbit transfer and raising, orbit correction, resistance compensate, position keeping, reposi- tion, space exploration and interplanetary flight.
文摘In this paper, we present hands-on experience related to on-going implementation in aircraft of power supply for a wireless sensor network deployed for aerodynamic flight tests. This autonomous battery-free power supply is capturing, managing and storing primary energy from the environment, using solar light and PV (photovoltaic) cells. For practical purposes, it is also equipped with an auxiliary power input. The specifications are detailed, the general architecture is presented and justified, and test results are discussed.
文摘One of the key features of Laplace's Equation is the property that allows the equation governing the flow field to be converted from a 3D problem throughout the field to a 2D problem for finding the potential on the surface. The solution is then found using this property by distributing "singularities" of unknown strength over discretized portions of the surface: panels. Hence the flow field solution is found by representing the surface by a number of panels, and solving a linear set of algebraic equations to determine the unknown strengths of the singularities. In this paper a Hess-Smith Panel Method is then used to examine the aerodynamics of NACA 4412 and NACA 23015 wind turbine airfoils. The lift coefficient and the pressure distribution are predicted and compared with experimental result for low Reynolds number. Results show a good agreement with experimental data.
基金Supported by The Japan Science Society(Foundation: Grant No.23-708K)
文摘This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.
文摘The hydrogen leakage detection and alarm processing system is established for the fuel cell (FC) power train lab to meet the hydrogen safety demand of the FC performance test and examination for the project named "Research and Development of the Vehicular Technology for the Fuel Cell City Bus" by Tsinghua University. The established hydrogen safety system includes the hydrogen supply system, hydrogen leakage detection system, alarm processing system, ventilation system, measures against electrostatic, thunder-arresting and explosion-protection, and the strict hydrogen operation rules. In this safety system, the explosion proof catalytic combustion sensors are used to detect the hydrogen leakage and the electrical control system is designed to process the alarm automatically. The hydrogen safety system plays an important role in the performance, examination of the FC and the assuring the personnel' s safety of the fuel cell power train lab.
文摘The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.
文摘This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses.
基金The Ministry of Science and Technology of China(Grant Nos.2011DFA60650,2012DFA81190,2014DFG71590,2013BAG06B02 and 2013BAG06B04)
文摘This paper examines the energy and environmental benefits within the whole life cycle shifting from traditional gasoline vehicles to electrified advanced vehicles under regional real-world driving behaviors. The advance vehicles focus on family passenger cars and include battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs). The GREET (greenhouse gases, regulated emissions, and energy use in transportation) model is adopted with regional circumstances modifications, especially the UF (utility factors) of PHEVs. The results show that the electrified vehicles offer great benefits concerning energy consumption, greenhouse gas (GHG) emissions as well as urban Particulate Matter 2,5 (PMz.s) emissions. Compared to conventional gasoline vehicles, the life-cycle total energy reduction for advance vehicles is 51% to 57%. There is little difference on energy reduction among the HEVs, PHEVs and BEVs, with the energy mix shifting from petroleum to coal for the stronger electrification. The reductions of GHG emissions are 57% for HEV, 54% to 48% for PHEVs with 10 miles to 40 miles CD range, and 40% for BEV. The life-cycle and local PM2.5 emissions are discussed separately. The life-cycle PM2.5 emissions increase with vehicle electrification and reach a maximum for the BEV which are 5% higher than the conventional vehicle (CV). However, electric vehicles can shift PM2.5 emissions from vehicle operation to upstream operations and help mitigate PM2.5 emissions in urban areas. The local emissions of PHEVs and BEVs can be reduced by 37% to 81% and 100% compared with CVs.
文摘The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.
基金funded by the National Natural Science Foundation of China(No.51376024)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20131101110015),China
文摘A new airfoil shape parameterization method is developed, which extended the Bezier curve to the generalized form with adjustable shape parameters. The local control parameters at airfoil leading and trailing edge regions are enhanced, where have significant effect on the aerodynamic performance of wind turbine. The results show this improved parameterization method has advantages in the fitting characteristics of geometry shape and aero- dynamic performance comparing with other three common airfoil parameterization methods. The new paramete- rization method is then applied to airfoil shape optimization for wind turbine using Genetic Algorithm (GA), and the wind turbine special airfoil, DU93-W-210, is optimized to achieve the favorable C1/Cd at specified flow con- ditions. The aerodynamic characteristic of the optimum airfoil is obtained by solving the RANS equations in computational fluid dynamics (CFD) method, and the optimization convergence curves show that the new para- meterization method has good convergence rate in less number of generations comparing with other methods. It is concluded that the new method not only has well controllability and completeness in airfoil shape representation and provides more flexibility in expressing the airfoil geometry shape, but also is capable to find efficient and op- timal wind turbine airfoil. Additionally, it is shown that a suitable parameterization method is helpful for improv- ing the convergence rate of the optimization algorithm.
基金supported by the National Natural Science Foundations of China (Grant No. 10972124)Science & Technology Project of Shandong Provincial Education Department of China (Grant No. J08LB04)+1 种基金Research Project of ‘SUST Spring Bud’ (2009AZZ020)Qunxing Project of SUST (qx101002)
文摘Based on a variational asymptotic analytical model, vibration and aeroelastic stability of rotor blades modeled as anisotropic thin-walled closed-section beams are systematically addressed. The analysis is applied to a laminated composite construction of the circumferentially asymmetric stiffness (CAS) that produces bending-twist coupling. The vibration characteristics of composite beam are determined by the Extended Galerkin Method. The unsteady aerodynamic loads and centrifugal force are integrated with the classical aerodynamic model to deal with aeroelastic stability analysis. The influence of some related factors, ply angle, rotating velocity, and wind speed, is investigated. The paper gives methods of eigenvalue analysis and aeroelastic response, and gives the approaches to restrain classical flutter.