A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defoss...A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.展开更多
After building a dynamic evolutionary game model, the essay studies the stability of the equilibrium in the game between the commercial banks and the closed-loop supply chain(CLSC) enterprises. By design of systematic...After building a dynamic evolutionary game model, the essay studies the stability of the equilibrium in the game between the commercial banks and the closed-loop supply chain(CLSC) enterprises. By design of systematic mechanism based on system dynamics theory, capital chains of independent small and medium-sized enterprises(SMEs) on CLSC are organically linked together. Moreover, a comparative simulation is studied for the previous independent and post-design dependent systems. The study shows that with business expanding and market risk growing, the independent finance chains of SMEs on CLSC often take on a certain vulnerability, while the SMEs closed-loop supply chain finance system itself is with a strong rigidity and concerto.展开更多
文摘A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.
基金the Natural Science Research Fund of Hubei Province(No.2014BDH121)
文摘After building a dynamic evolutionary game model, the essay studies the stability of the equilibrium in the game between the commercial banks and the closed-loop supply chain(CLSC) enterprises. By design of systematic mechanism based on system dynamics theory, capital chains of independent small and medium-sized enterprises(SMEs) on CLSC are organically linked together. Moreover, a comparative simulation is studied for the previous independent and post-design dependent systems. The study shows that with business expanding and market risk growing, the independent finance chains of SMEs on CLSC often take on a certain vulnerability, while the SMEs closed-loop supply chain finance system itself is with a strong rigidity and concerto.