The adsorption and desorption kinetic of natural zeolite on NH4+ was stud-ied by lab analysis. The results showed that the adsorption and desorption kinetic of natural zeolite on NH4+ coincided with the first-order ...The adsorption and desorption kinetic of natural zeolite on NH4+ was stud-ied by lab analysis. The results showed that the adsorption and desorption kinetic of natural zeolite on NH4+ coincided with the first-order kinetics, modified Freundlich equation, parabolic diffusion model, and heterogeneous diffusion model. The desorp-tion of the adsorbed NH4+ was far rapider than the adsorption, which can be fin-ished within 60 min.展开更多
Valonia tannin (VT) was gelated through polymerization with formaldehyde to prepare an adsorbent, which was found effective to remove Ag+ from aqueous solution. The adsorption-desorption behaviors of valonia tannin...Valonia tannin (VT) was gelated through polymerization with formaldehyde to prepare an adsorbent, which was found effective to remove Ag+ from aqueous solution. The adsorption-desorption behaviors of valonia tannin resin (VTR) were investigated under various initial Ag+ concentrations, solution temperatures, pH values etc. The applicability of empirical kinetic models was also studied. The pseudo-second-order model studies revealed the Ag+ sorption was very rapid. VT and VTR were characterized using FTIR and SEM before and after adsorption. The Ag+ biosorption on VTR increased with a rise in initial concentration of Ag+ and with a decrease in temperature. Desorption experiments were conducted at low pH values and the solutions of H2SO4, HNO3 and HCl were used for desorption. The VTR shows high adsorption capacity to Ag+ in a wide pH range of 2.0-7.0, and a maximum adsorption capacity of 97.08 mg/g was obtained at pH 5.0 and 296 K when the initial concentration of Ag+ was 100.0 mg/L. Ag+ ion desorption could reach 99.6% using 1 mol/L HCl+1% thiourea (NH2CSNH2) solution. By utilizing such characteristics of VTR, it is expected that it can be applied to recovering Ag+ efficiently and simply with low cost.展开更多
The effect of temperature on the properties of boron adsorption-desorption in brown-red soil, yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique. Th...The effect of temperature on the properties of boron adsorption-desorption in brown-red soil, yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique. The experimental data of B adsorption-desorption amounts and reaction t line at 25 and 40℃ were fitted by the zero-order, first-order and parabolic diffusion kinetic equations. The adsorption process was in conformity with the parabolic diffusion law at both the temperatures, and the values of rate constant of the parabolic diffusion equation in B adsorption were 0.138, 0.124 and 0.105 mg kg-1 min-1/2 at 25℃, and 0.147, 0.146 and 0.135 mg kg-1 min-1/2 at 40℃ for the brown-red soil, yellow-brown soil, and calcareous alluvial soil, respectively. The relationship between amount of B desorption and reaction time could be well described by the first-order kinetic equation, and the corresponding values of rate constant were 0.0422, 0.0563 and 0.0384 min-1 at 25℃, and 0.0408, 0.042 3 and 0.0401 min-1 at 40℃ for the brown-red soil, the yellow-brown soil and the calcareous alluvial soil, respectively. Therefore, the desorption process of B might be related to the amount of B adsorbed in soil. The higher the temperature, the lower the amount of B adsorption for the same soil in the same reaction time. The values of the apparent activation energy of B adsorption in the three soils calculated with the rate constants of parabolic diffusion equation were 3.27, 8.44 and 12.99 kJ mol-1, respectively, based on the experimental data of B adsorption amounts and reaction time at 25 and 40℃.展开更多
基金Supported by Program for Excellent Talents in Liaoning Higher Education Institutions(LJQ2012103)~~
文摘The adsorption and desorption kinetic of natural zeolite on NH4+ was stud-ied by lab analysis. The results showed that the adsorption and desorption kinetic of natural zeolite on NH4+ coincided with the first-order kinetics, modified Freundlich equation, parabolic diffusion model, and heterogeneous diffusion model. The desorp-tion of the adsorbed NH4+ was far rapider than the adsorption, which can be fin-ished within 60 min.
基金supported by The Scientific and Technological Research Council of Turkey. The authors would like to present their deepest thanks TUBITAK for its financial support
文摘Valonia tannin (VT) was gelated through polymerization with formaldehyde to prepare an adsorbent, which was found effective to remove Ag+ from aqueous solution. The adsorption-desorption behaviors of valonia tannin resin (VTR) were investigated under various initial Ag+ concentrations, solution temperatures, pH values etc. The applicability of empirical kinetic models was also studied. The pseudo-second-order model studies revealed the Ag+ sorption was very rapid. VT and VTR were characterized using FTIR and SEM before and after adsorption. The Ag+ biosorption on VTR increased with a rise in initial concentration of Ag+ and with a decrease in temperature. Desorption experiments were conducted at low pH values and the solutions of H2SO4, HNO3 and HCl were used for desorption. The VTR shows high adsorption capacity to Ag+ in a wide pH range of 2.0-7.0, and a maximum adsorption capacity of 97.08 mg/g was obtained at pH 5.0 and 296 K when the initial concentration of Ag+ was 100.0 mg/L. Ag+ ion desorption could reach 99.6% using 1 mol/L HCl+1% thiourea (NH2CSNH2) solution. By utilizing such characteristics of VTR, it is expected that it can be applied to recovering Ag+ efficiently and simply with low cost.
文摘The effect of temperature on the properties of boron adsorption-desorption in brown-red soil, yellowbrown soil and calcareous alluvial soil of Hubei Province was investigated with the mobile displacement technique. The experimental data of B adsorption-desorption amounts and reaction t line at 25 and 40℃ were fitted by the zero-order, first-order and parabolic diffusion kinetic equations. The adsorption process was in conformity with the parabolic diffusion law at both the temperatures, and the values of rate constant of the parabolic diffusion equation in B adsorption were 0.138, 0.124 and 0.105 mg kg-1 min-1/2 at 25℃, and 0.147, 0.146 and 0.135 mg kg-1 min-1/2 at 40℃ for the brown-red soil, yellow-brown soil, and calcareous alluvial soil, respectively. The relationship between amount of B desorption and reaction time could be well described by the first-order kinetic equation, and the corresponding values of rate constant were 0.0422, 0.0563 and 0.0384 min-1 at 25℃, and 0.0408, 0.042 3 and 0.0401 min-1 at 40℃ for the brown-red soil, the yellow-brown soil and the calcareous alluvial soil, respectively. Therefore, the desorption process of B might be related to the amount of B adsorbed in soil. The higher the temperature, the lower the amount of B adsorption for the same soil in the same reaction time. The values of the apparent activation energy of B adsorption in the three soils calculated with the rate constants of parabolic diffusion equation were 3.27, 8.44 and 12.99 kJ mol-1, respectively, based on the experimental data of B adsorption amounts and reaction time at 25 and 40℃.