The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to t...The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to the change in the bearing capacity of pile but neglected the difference of dynamic characteristics before and after construction,and potential changes in stress history of remaining soil are also ignored.In this work,a calculation model is built to investigate the influence of excavation on dynamic impedance of underpinning pile considering the effect of stress history.The soil is simulated by the dynamic Winkler foundation,which is characterized by springs and dashpots.Properties of remaining soil after excavation are updated to consider the effect of stress history through modifying the initial shear modulus and related parameters.The dynamic impedance of pile after excavation is obtained based on the transfer matrix method.The parameter study is carried out to evaluate the dynamic impedance with various excavation depths,considering or ignoring stress history effect,and various element lengths.The results show that shallow soil plays an important role to dynamic impedance,and overestimated dynamic impedance is obtained if not considering the stress history effect.展开更多
Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the ...Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.展开更多
In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Differe...In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.展开更多
The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are...The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are established. The equation is solved by Wilson-θ algorithm. On the basis of the above principles,a structure kinetics analysis program is compiled. The dynamic response of supposed warship under air explosion is calculated conveniently and quickly. Under the explosion condition designed in the paper,the positive pressure period of non-contact explosion wave is much less than the natural periods of the first four modes of hull girder and the resonance of ship girder overall vibration can be avoided. The ratio of midship maximum moment to ultimate bearing strength under non-contact explosion accelerates with the increment of impact factor.展开更多
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in hi...Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.展开更多
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
基金Projects(51878487,41672266)supported by the National Natural Science Foundation of China。
文摘The addition of basement beneath existing building changes the underpinning pile from fully embedded to partially embedded,and thus influences the mechanical properties of pile.In the past,scholars paid attention to the change in the bearing capacity of pile but neglected the difference of dynamic characteristics before and after construction,and potential changes in stress history of remaining soil are also ignored.In this work,a calculation model is built to investigate the influence of excavation on dynamic impedance of underpinning pile considering the effect of stress history.The soil is simulated by the dynamic Winkler foundation,which is characterized by springs and dashpots.Properties of remaining soil after excavation are updated to consider the effect of stress history through modifying the initial shear modulus and related parameters.The dynamic impedance of pile after excavation is obtained based on the transfer matrix method.The parameter study is carried out to evaluate the dynamic impedance with various excavation depths,considering or ignoring stress history effect,and various element lengths.The results show that shallow soil plays an important role to dynamic impedance,and overestimated dynamic impedance is obtained if not considering the stress history effect.
基金Projects(51308273,41372307,41272326)supported by the National Natural Science Foundation of ChinaProject(20090211110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010(A)06-b)supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.
文摘In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.
文摘The ship hull is simplified as a free beam with varying sections. Based on hydroelasticity and explosion mechanics theory,mechanical model and kinetic equation for hull girder vibration under non-contact explosion are established. The equation is solved by Wilson-θ algorithm. On the basis of the above principles,a structure kinetics analysis program is compiled. The dynamic response of supposed warship under air explosion is calculated conveniently and quickly. Under the explosion condition designed in the paper,the positive pressure period of non-contact explosion wave is much less than the natural periods of the first four modes of hull girder and the resonance of ship girder overall vibration can be avoided. The ratio of midship maximum moment to ultimate bearing strength under non-contact explosion accelerates with the increment of impact factor.
基金supported by the National Natural Science Foundation of China(Grant No.51276018)
文摘Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.