Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting di...In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.展开更多
In order to study the seismic performance of typical approach bridge for port project, the seismic vulnerability model was created. 100 of the earthquake motion records are selected from the database of Pacific Earthq...In order to study the seismic performance of typical approach bridge for port project, the seismic vulnerability model was created. 100 of the earthquake motion records are selected from the database of Pacific Earthquake Research Centre, In order to obtain the maximum responses of structure dynamic response, the model was calculated by using non-linear time history analysis. Then reliability analysis method was used to generate the fragility curves of bridge components. And compared two kinds of bearing made differences to structure' s vulnerability. Researches show that bearing is easy to breakdown with earthquake action. Isolation bearing has good effect, and significantly reduces failure probability, fmaUy the fragility curves obtained can be used to evaluate the seismic performance of continuous beam bridge for port project, and provide the basis for seismic design of bridges for port project.展开更多
In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed u...In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.展开更多
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
文摘In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.
文摘In order to study the seismic performance of typical approach bridge for port project, the seismic vulnerability model was created. 100 of the earthquake motion records are selected from the database of Pacific Earthquake Research Centre, In order to obtain the maximum responses of structure dynamic response, the model was calculated by using non-linear time history analysis. Then reliability analysis method was used to generate the fragility curves of bridge components. And compared two kinds of bearing made differences to structure' s vulnerability. Researches show that bearing is easy to breakdown with earthquake action. Isolation bearing has good effect, and significantly reduces failure probability, fmaUy the fragility curves obtained can be used to evaluate the seismic performance of continuous beam bridge for port project, and provide the basis for seismic design of bridges for port project.
基金Supported by the National Key Technology R&D Program in 11 th Five Years Plan of China(2006BAK03B06)
文摘In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.