Super hydrophobic copper wafer was prepared by means of solution immersion and surface self-assembly methods. Different immersion conditions were explored for the best hydrophobic surface. Scanning electron microscopy...Super hydrophobic copper wafer was prepared by means of solution immersion and surface self-assembly methods. Different immersion conditions were explored for the best hydrophobic surface. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and water contact angle measurements were used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on copper substrates, respectively. Results show that the super hydrophobic surface is composed of micro structure of Cu 7 S 4 . The films present a high water contact angle larger than 150°, a low sliding angle less than 3°, good abrasion resistance and storage stability. The molecular dynamics simulation confirms that N-dodecyl mercaptan molecules link up with Cu 7 S 4 admirably, compared with Cu, which contributes to the stable super hydrophobic surface.展开更多
A novel method was developed for papain immobilization through a biomimetic silicification process induced by papain. By incubating papain in a silica precursor solution, the papain-silica composite formed rapidly and...A novel method was developed for papain immobilization through a biomimetic silicification process induced by papain. By incubating papain in a silica precursor solution, the papain-silica composite formed rapidly and oanain was encansulated. The encansulation efficiency and the recovery activity were 82.60% and 83.09%, re-spectively. Compared with enzymes and biomolecules immobilized in biosilica matrix in the presence of additaonal silica-precipitating species, this papaln encapsulation process, a biomimetic approach, realized high encapsulation efficiency by its autosilification activity under mild conditions (near-neutral pH and ambient temperature). Fur-thermore, the encapsulated papain exhibits enhanced thermal, pH, recycling and storage stabilities. Kinetic analysis showed that the biomimetic silica matrix did not significantly hinder the mass transport of substrate or the release of product.展开更多
Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the s...Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from low voltage storage elements such as supercapacitors. The paper compares three different solutions and shows that the MMC can benefit from weight and volume reduction of the output inductance when shifted switching modulation strategy is used. Using this modulation strategy, not only the output frequency is increased, but also the magnitude of the inductor applied voltage is reduced, reducing inductor size and volume.展开更多
Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to m...Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to moderate intensity aerobic exercise, fat plays an important role providing energy. Especially when the movement lasts for more than 3 ~ 4h, energy provided by fat can account for 70% to 90% of total energy metabolism. Many people use many means and methods in order to increase the proportion of fat oxidation providing for energy in the movement and save glucose consumption in vivo, improving the body' s endurance. On the other hand, endurance exercise can burn fat properly, and play an important role to reduce accumulation of body fat, prevent hyperlipidemia and improve lipid levels.展开更多
The prototype fast breeder reactor "MONJU" has an EVSS (ex-vessel fuel storage system) which consists mainly of an EVST (ex-vessel fuel storage tank) and an EVST sodium cooling system. EVST sodium cooling system...The prototype fast breeder reactor "MONJU" has an EVSS (ex-vessel fuel storage system) which consists mainly of an EVST (ex-vessel fuel storage tank) and an EVST sodium cooling system. EVST sodium cooling system consists of three independent loops. During the normal operation, the primary sodium in the EVST is circulated by natural convection and the secondary circulation in the EVST sodium cooling system is powered by electromagnetic pumps. When an SBO (station blackout) occurs, all the pumps and blowers are tripped. Therefore, it was necessary to evaluate the cooling ability by the natural circulation of sodium in the EVST sodium cooling system and air through the air cooler during the SBO. In this study, an analysis and evaluation of the plant dynamics for the spent fuel and the EVSS structural integrity during an SBO were performed. When the number of cooling loops was not changed and natural circulation occurred in only two loops, the sodium temperature in the EVST increased to approximately 450 ~C. However, the structural integrity of the EVSS was maintained. The analytical results, therefore, help clarify the number of necessary cooling loops for efficient decay heat removal and sodium temperature behavior in an SBO.展开更多
Solid electrolyte based-resistive memories have been considered to be a potential candidate for future information technology with applications in non-volatile memory, logic circuits and neuromorphic computing. A cond...Solid electrolyte based-resistive memories have been considered to be a potential candidate for future information technology with applications in non-volatile memory, logic circuits and neuromorphic computing. A conductive filament model has been generally accepted to be the underlying mechanism for the resistive switching. However, the growth dynamics of such conductive filaments is still not fully understood. Here, we explore the controllability of filament growth by correlating observations of the filament growth with the electric field distribution and several other factors. The filament growth behavior has been recorded using in situ transmission electron microscopy. By studying the real- time recorded filament growth behavior and morphologies, we have been able to simulate the electric field distribution in accordance with our observations. Other factors have also been shown to affect the filament growth, such as Joule heating and electrolyte infrastructure. This work provides insight into the controllable growth of conductive filaments and will help guide research into further functionalities of nanoionic resistive memories.展开更多
Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting...Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting and biological imaging and photo-induced therapy. Upconversion luminescence dynamics has long been believed to be determined solely by the emitting ions and their interactions with neighboring sensitizing ions. Recent research shows that this does not hold for nanostructures.The luminescence time behavior in the nanomaterials is confirmed seriously affected by the migration process of the excitation energy. This new fundamental insight is significant for the design of functional upconversion nanostructures. In this paper we review relevant theoretical and spectroscopic results and demonstrate how to tune the rise and decay profile of upconversion luminescence based on energy migration path modulation.展开更多
The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that...The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2,020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in^2. This requires increased performance from the magnetic pole of the electromag- netic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm × 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. The results point the way towards a new nanoscale magnetic field source to further develop in situ transmission electron microscopy.展开更多
基金Supported by the Beijing Youth Fellowship Program and the Fundamental Research Funds for the Central Universities(2011YXL056)
文摘Super hydrophobic copper wafer was prepared by means of solution immersion and surface self-assembly methods. Different immersion conditions were explored for the best hydrophobic surface. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and water contact angle measurements were used to investigate the morphologies, microstructures, chemical compositions and hydrophobicity of the produced films on copper substrates, respectively. Results show that the super hydrophobic surface is composed of micro structure of Cu 7 S 4 . The films present a high water contact angle larger than 150°, a low sliding angle less than 3°, good abrasion resistance and storage stability. The molecular dynamics simulation confirms that N-dodecyl mercaptan molecules link up with Cu 7 S 4 admirably, compared with Cu, which contributes to the stable super hydrophobic surface.
基金Supported by the National Natural Science Foundation of China (21006020, 21276060, 21276062), the Natural Science Foundation of Hebei Province (B2010000035, B2011202095), the Science and Technology Research Key Project of Higher School in Hebei Province (ZD2010118), the Application Basic Research Plan Key Basic Research Project of Hebei Province (11965150D) and Open Funding Project of ~e National Key Laboratory ofBiochemi'cal Engineering (China).
文摘A novel method was developed for papain immobilization through a biomimetic silicification process induced by papain. By incubating papain in a silica precursor solution, the papain-silica composite formed rapidly and oanain was encansulated. The encansulation efficiency and the recovery activity were 82.60% and 83.09%, re-spectively. Compared with enzymes and biomolecules immobilized in biosilica matrix in the presence of additaonal silica-precipitating species, this papaln encapsulation process, a biomimetic approach, realized high encapsulation efficiency by its autosilification activity under mild conditions (near-neutral pH and ambient temperature). Fur-thermore, the encapsulated papain exhibits enhanced thermal, pH, recycling and storage stabilities. Kinetic analysis showed that the biomimetic silica matrix did not significantly hinder the mass transport of substrate or the release of product.
文摘Regenerative braking is presented in many electric traction applications such as electric and hybrid vehicles, lifts and railway. The regenerated energy can be stored for future use, increasing the efficiency of the system. This paper outlines the benefits of the MMC (modular multilevel converter) in front of the cascaded or series connection of converters to achieve high voltage from low voltage storage elements such as supercapacitors. The paper compares three different solutions and shows that the MMC can benefit from weight and volume reduction of the output inductance when shifted switching modulation strategy is used. Using this modulation strategy, not only the output frequency is increased, but also the magnitude of the inductor applied voltage is reduced, reducing inductor size and volume.
文摘Fatty is one of the most important energy storage substances in the human body, and is an important source of energy in motion. It has 10 times bigger storage space than glycogen. Some studies suggest that in low to moderate intensity aerobic exercise, fat plays an important role providing energy. Especially when the movement lasts for more than 3 ~ 4h, energy provided by fat can account for 70% to 90% of total energy metabolism. Many people use many means and methods in order to increase the proportion of fat oxidation providing for energy in the movement and save glucose consumption in vivo, improving the body' s endurance. On the other hand, endurance exercise can burn fat properly, and play an important role to reduce accumulation of body fat, prevent hyperlipidemia and improve lipid levels.
文摘The prototype fast breeder reactor "MONJU" has an EVSS (ex-vessel fuel storage system) which consists mainly of an EVST (ex-vessel fuel storage tank) and an EVST sodium cooling system. EVST sodium cooling system consists of three independent loops. During the normal operation, the primary sodium in the EVST is circulated by natural convection and the secondary circulation in the EVST sodium cooling system is powered by electromagnetic pumps. When an SBO (station blackout) occurs, all the pumps and blowers are tripped. Therefore, it was necessary to evaluate the cooling ability by the natural circulation of sodium in the EVST sodium cooling system and air through the air cooler during the SBO. In this study, an analysis and evaluation of the plant dynamics for the spent fuel and the EVSS structural integrity during an SBO were performed. When the number of cooling loops was not changed and natural circulation occurred in only two loops, the sodium temperature in the EVST increased to approximately 450 ~C. However, the structural integrity of the EVSS was maintained. The analytical results, therefore, help clarify the number of necessary cooling loops for efficient decay heat removal and sodium temperature behavior in an SBO.
文摘Solid electrolyte based-resistive memories have been considered to be a potential candidate for future information technology with applications in non-volatile memory, logic circuits and neuromorphic computing. A conductive filament model has been generally accepted to be the underlying mechanism for the resistive switching. However, the growth dynamics of such conductive filaments is still not fully understood. Here, we explore the controllability of filament growth by correlating observations of the filament growth with the electric field distribution and several other factors. The filament growth behavior has been recorded using in situ transmission electron microscopy. By studying the real- time recorded filament growth behavior and morphologies, we have been able to simulate the electric field distribution in accordance with our observations. Other factors have also been shown to affect the filament growth, such as Joule heating and electrolyte infrastructure. This work provides insight into the controllable growth of conductive filaments and will help guide research into further functionalities of nanoionic resistive memories.
基金supported by the European Union MSCA-ITN-ETN Action Program,Image-Guided Surgery and Personalised Postoperative Immunotherapy to Improving Cancer Outcome(ISPIC)(Grant No.675743)the Netherlands Organisation for Scientific Research in the framework of the Fund New Chemical Innovation(Grant No.731.015.206)+2 种基金the European COST Action(Grant No.CM1403)the Joint Research Program between CAS of China and the Royal Netherlands Academy of Arts and Sciences(KNAW)Innovation Project of State Key Laboratory of Luminescence and Applications of China
文摘Upconversion is a process in which one photon is emitted upon absorption of several photons of lower energy. Potential applications include super resolution spectroscopy, high density data storage, anti-counterfeiting and biological imaging and photo-induced therapy. Upconversion luminescence dynamics has long been believed to be determined solely by the emitting ions and their interactions with neighboring sensitizing ions. Recent research shows that this does not hold for nanostructures.The luminescence time behavior in the nanomaterials is confirmed seriously affected by the migration process of the excitation energy. This new fundamental insight is significant for the design of functional upconversion nanostructures. In this paper we review relevant theoretical and spectroscopic results and demonstrate how to tune the rise and decay profile of upconversion luminescence based on energy migration path modulation.
文摘The proliferation of mobile devices in society accessing data via the "cloud" is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2,020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in^2. This requires increased performance from the magnetic pole of the electromag- netic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm × 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. The results point the way towards a new nanoscale magnetic field source to further develop in situ transmission electron microscopy.