Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic th...Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.展开更多
This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equation...This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.展开更多
For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and...For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance.展开更多
By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation cons...By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation constructed by an integrated installation technique. According to the simulation results, under the ship collision, a certain range of plastic zone appears within a local area of arc transition structure of the bucket foundation, and the concrete plastic zone is seriously damaged. As the stress level of OWT tower is relatively low, the OWT tower is less affected. A great inertial force is generated at the top of the OWT tower as the mass of nacelle and blades is up to 400 t. The displacement of the tower is in the opposite direction of the ship collision at the end of 1 s under the action of inertial force. There is only a minor damage in the ship bow. Most of the kinetic energy is transformed into the plastic dissipation and absorbed by the arc transition structure of bucket foundation.展开更多
A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program....A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.In this method,the full-scale model of the aircraft,the vehicle and the parachute are constructed.Then,they are imported into the ADAMS software,constraint solutions and driving forces are then added for visual dynamic simulation.The unsteady aerodynamic forces of the vehicle in the aircraft wake are calculated by CFD and the moving grid technique.The forces generated by the parachute can be derived from the Kirchhoff motion equation.Through comparing and analyzing the simulation results under different launch conditions,it has been proven that this method simulates the separation of a launch vehicle from the aircraft in the aircraft wake accurately.It provides the foundation for the aggregate project of internally carried air-launch vehicles,and offers a new referenced method for multi-body dynamic simulation.展开更多
A parallelized resolved method for the simulation of the dynamics of immersed bodies within fluids is presented. The algorithm uses a FDM (fictitious domain method) and combines the Lagrangian DEM (discrete element...A parallelized resolved method for the simulation of the dynamics of immersed bodies within fluids is presented. The algorithm uses a FDM (fictitious domain method) and combines the Lagrangian DEM (discrete element method) for tracking the bodies with a CFD (computational fluid dynamics) method for calculating the dynamics of the fluid phase. First the CFD-calculation is carried out, disregarding the solid bodies. Afterwards, the velocity information from the bodies is included and the force, the fluid imposes onto the bodies, is computed. The last step consists of a correction-operation which ensures the fulfillment of the conservation equation. Dynamic local mesh refinement is used for minimizing the number of fluid cells. The CFD-DEM coupling is realized within the Open Source framework CFDEMcoupling (www.cfdem.com), where the DEM software LIGGGHTS (www.liggghts.com) is linked against an OpenFOAM^-based CFD solver. While both LIGGGHTS and the CFD solver were already parallelized, only a recent improvement of the algorithm permits the fully parallel computation of resolved problems. This parallelization permits the treatment of large-scale problems. The enclosed validation and application examples show the dynamics of the flow around settling and rotating spheres as well as an investigation of the settling of spheres regarding the Boycott effect.展开更多
Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking J...Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.展开更多
This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
文摘Aim To study the influence of restraint system performance upon the occupant's response during impact, and provide a scientific base for occupant restraint system design. Methods \ In the light of basic theory of multibody system dynamics and impact dynamics on the basis of classical theory of impact, R W method is adopted to construct the vehicle occupant system model consisting of fourteen rigid bodies, thirty seven DOFs and slip joints for the simulation. A software named SVC3D(3 dimensional simulation of vehicle crash) is developed in the FORTRAN language. Results\ The results of simulation have a good coincidence with those of tests and the restraint system with low elongation webbing and equipped with pretensioner provides better restraint effect for the occupant. Conclusion\ The model of vehicle occupant multibody system and SVC3D are suitable for use. Occupant should be belted with low elongation webbing to a certain degree and occupant restraint system should be equipped with pretensioner.
文摘This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.
基金Supported by National Natural Science Foundation of China (No50575203)
文摘For a single cylinder engine, the total unbalanced inertial forces occur in the engine block, which results in engine’s vibration and deteriorated noise. In order to eliminate the unbalanced forces, counterweight and primary balance shaft should be attached to the cylinder block so that engine durability and ride comfortability may be further improved. Traditionally one third of connecting rod assembly’s mass is treated as reciprocating mass, and two thirds as rotating mass when designing balance mechanism. In this paper, a new method based on the multibody dynamics simulation is introduced to separate the reciprocating mass and rotating mass of connecting rod assembly. The model consists of crankshaft, connecting rod, piston and the simulation is performed subsequently. According to the simulation results of the main bearing loads, the reciprocating mass and rotating mass are separated. Finally a new balance mechanism is designed and simulation results show that it completely balances inertial forces to improve the engine’s noise vibration and harshness performance.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA051705)National Natural Science Foundation of China(No.51109160)International Science and Technology Cooperation Program of China(2012DFA70490)
文摘By using ABAQUS/Explicit, the dynamic process of an offshore wind turbine(OWT) stricken by a ship of 5000DWT in the front direction is simulated. The OWT is located on a large-scale prestressing bucket foundation constructed by an integrated installation technique. According to the simulation results, under the ship collision, a certain range of plastic zone appears within a local area of arc transition structure of the bucket foundation, and the concrete plastic zone is seriously damaged. As the stress level of OWT tower is relatively low, the OWT tower is less affected. A great inertial force is generated at the top of the OWT tower as the mass of nacelle and blades is up to 400 t. The displacement of the tower is in the opposite direction of the ship collision at the end of 1 s under the action of inertial force. There is only a minor damage in the ship bow. Most of the kinetic energy is transformed into the plastic dissipation and absorbed by the arc transition structure of bucket foundation.
基金Supported by the National Natural Science Foundation Programme of China(No.61374145)
文摘A method based on the virtual prototype technology simulating the separation of a launch vehicle from its aircraft in the aircraft wake was proposed based on the internally carried air-launched launch vehicle program.In this method,the full-scale model of the aircraft,the vehicle and the parachute are constructed.Then,they are imported into the ADAMS software,constraint solutions and driving forces are then added for visual dynamic simulation.The unsteady aerodynamic forces of the vehicle in the aircraft wake are calculated by CFD and the moving grid technique.The forces generated by the parachute can be derived from the Kirchhoff motion equation.Through comparing and analyzing the simulation results under different launch conditions,it has been proven that this method simulates the separation of a launch vehicle from the aircraft in the aircraft wake accurately.It provides the foundation for the aggregate project of internally carried air-launch vehicles,and offers a new referenced method for multi-body dynamic simulation.
文摘A parallelized resolved method for the simulation of the dynamics of immersed bodies within fluids is presented. The algorithm uses a FDM (fictitious domain method) and combines the Lagrangian DEM (discrete element method) for tracking the bodies with a CFD (computational fluid dynamics) method for calculating the dynamics of the fluid phase. First the CFD-calculation is carried out, disregarding the solid bodies. Afterwards, the velocity information from the bodies is included and the force, the fluid imposes onto the bodies, is computed. The last step consists of a correction-operation which ensures the fulfillment of the conservation equation. Dynamic local mesh refinement is used for minimizing the number of fluid cells. The CFD-DEM coupling is realized within the Open Source framework CFDEMcoupling (www.cfdem.com), where the DEM software LIGGGHTS (www.liggghts.com) is linked against an OpenFOAM^-based CFD solver. While both LIGGGHTS and the CFD solver were already parallelized, only a recent improvement of the algorithm permits the fully parallel computation of resolved problems. This parallelization permits the treatment of large-scale problems. The enclosed validation and application examples show the dynamics of the flow around settling and rotating spheres as well as an investigation of the settling of spheres regarding the Boycott effect.
基金Technology Plan Projects of Tianjin Planning Bureau(No.2010H3-0011)
文摘Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.