Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA ...Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.展开更多
Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the ex...Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.展开更多
Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydrop...Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) g...Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) generation of porous media samples,(2) computation of permeability via fluid dynamics simulations,(3) training of convolutional neural networks (CNN) with simulated data, and (4) validations against simulations. Comparison of machine learning results and the ground truths suggests excellent predictive performance across a wide range of porosities and pore geometries, especially for those with dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conventional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude compared to fluid dynamic simulations. We found that, by including physical parameters that are known to affect permeability into the neural network, the physics-informed CNN generated better results than regular CNN. However, improvements vary with implemented heterogeneity.展开更多
The catalytic performance of carbide slag in transesterification is investigated and the reaction kinetic parameters are calculated. After being activated at 650℃, calcium compounds of carbonate and hydroxide in the ...The catalytic performance of carbide slag in transesterification is investigated and the reaction kinetic parameters are calculated. After being activated at 650℃, calcium compounds of carbonate and hydroxide in the carbide slag are mainly transformed into calcium oxide. The activated carbide slag utilized as the transesterification catalyst is characterized by X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), nitrogen adsorption-desorption and the Hammett indicator method. Compared with the carbide slag activated at 700 and 800℃, the largest surface area of 22.63 m2g^-1, the smallest particle size of 265.12 nm and the highest catalytic efficiency of the carbide slag activated at 650℃ guarantee its capacity in catalyzing transesterification. Then, the influences of activated temperature (Ta), molar ratio of methanol to oil (γ), catalyst added amount (ζ), reaction temperature (Tr) and reaction time (τ) on the catalytic performance are investi- gated. Under the optimal transesterification condition of Ta=650℃, γ=15, ζ=3%, Tr=60℃ and τ=-110 rain, the catalytic efficiency of 92.98% can be achieved. Finally, the kinetic parameters of transesterification catalyzed by the activated carbide slag are calculated, where activation energy (E) is 68.45 kJ mol^-1 and pre-exponential factor (k0) is 1.75×10^9 min^-1. The activated carbide slag shows better reused property than calcium hydroxide.展开更多
基金Supported by Inner Mongolia Natural Science Foundation(200711020112)Innovation Fundation of Inner Mongolia University of Science and Technology (2009NC064)~~
文摘Based on protein-DNA complex crystal structural data in up-to-date Nucleic Acid Database,the related parameters of DNA Kinetic Structure were investigated by Monte-Carlo Multiple Integrals on the base of modified DNA structure statistical mechanical model,and time complexity and precision were analyzed on the calculated results.
基金Project(2012zzts082)supported by the Fundamental Research Funds of Central South University,ChinaProject(02JJY2005)supported by the Natural Science Foundation of Hunan Province,ChinaProject(20130843023)supported by China Scholarship Council
文摘Based on the parametric analysis of the expanding zone of the vacuum dust suction mouth,the flow in the vacuum dust suction mouth was simulated by computational fluid dynamics(CFD)software,Fluent.The effects of the expanding zone parameters on flow simulation were analyzed.The results show that simulation effects depend on threshold values of the expanding zone parameters of the dust suction mouth,and the threshold values of the expanding zone can be obtained according to the different structures of the vacuum dust suction mouth and be selected as the geometric parameters in calculating,and also corners of the expanding zone make unobvious difference in calculation accuracy and in computational efficiency compared with no corner.The simulation results provide practical guidance to the flow simulation on the dust suction mouth.
基金Project(51405201)supported by the National Natural Science Foundation of ChinaProject(1291120046)supported by the Jiangsu University Advanced Talents Initial Funding,China+1 种基金Project(QC201303)supported by the Open Fund of Automotive Engineering Key Laboratory,ChinaProject(2014M551509)supported by the China Postdoctoral Science Foundation
文摘Inspired by the idea that bionic non-smooth surfaces(BNSS) can reduce fluid adhesion and resistance, and the effect of bionic V-riblet non-smooth structure arranged in tire tread pattern grooves surface on anti-hydroplaning performance was investigated by using computational fluid dynamics(CFD). The physical model of the object(model of V-riblet surface distribution, hydroplaning model) and SST k-ω turbulence model were established for numerical analysis of tire hydroplaning. With the help of a orthogonal table L16(45), the parameters of V-riblet structure design compared to the smooth structure were analyzed, and obtained the priority level of the experimental factors as well as the best combination within the scope of the experiment. The simulation results show that V-riblet structure can reduce water flow resistance by disturbing the eddy movement in boundary layers. Then, the preferred type of V-riblet non-smooth structure was arranged on the bottom of tire grooves for hydroplaning performance analysis. The results show that bionic V-riblet non-smooth structure can effectively increase hydroplaning velocity and improve tire anti-hydroplaning performance. Bionic design of tire tread pattern grooves is a good way to promote anti-hydroplaning performance without increasing additional groove space, so that tire grip performance and roll noise are avoided due to grooves space enlargement.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
文摘Fast prediction of permeability directly from images enabled by image recognition neural networks is a novel pore-scale modeling method that has a great potential. This article presents a framework that includes (1) generation of porous media samples,(2) computation of permeability via fluid dynamics simulations,(3) training of convolutional neural networks (CNN) with simulated data, and (4) validations against simulations. Comparison of machine learning results and the ground truths suggests excellent predictive performance across a wide range of porosities and pore geometries, especially for those with dilated pores. Owning to such heterogeneity, the permeability cannot be estimated using the conventional Kozeny–Carman approach. Computational time was reduced by several orders of magnitude compared to fluid dynamic simulations. We found that, by including physical parameters that are known to affect permeability into the neural network, the physics-informed CNN generated better results than regular CNN. However, improvements vary with implemented heterogeneity.
基金supported by the National Natural Science Foundation of China(Grant No.51206098)the Shandong Province Outstanding Young and Middle-Aged Scientists Research Award Fund(Grant No.BS2012NJ005)
文摘The catalytic performance of carbide slag in transesterification is investigated and the reaction kinetic parameters are calculated. After being activated at 650℃, calcium compounds of carbonate and hydroxide in the carbide slag are mainly transformed into calcium oxide. The activated carbide slag utilized as the transesterification catalyst is characterized by X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), nitrogen adsorption-desorption and the Hammett indicator method. Compared with the carbide slag activated at 700 and 800℃, the largest surface area of 22.63 m2g^-1, the smallest particle size of 265.12 nm and the highest catalytic efficiency of the carbide slag activated at 650℃ guarantee its capacity in catalyzing transesterification. Then, the influences of activated temperature (Ta), molar ratio of methanol to oil (γ), catalyst added amount (ζ), reaction temperature (Tr) and reaction time (τ) on the catalytic performance are investi- gated. Under the optimal transesterification condition of Ta=650℃, γ=15, ζ=3%, Tr=60℃ and τ=-110 rain, the catalytic efficiency of 92.98% can be achieved. Finally, the kinetic parameters of transesterification catalyzed by the activated carbide slag are calculated, where activation energy (E) is 68.45 kJ mol^-1 and pre-exponential factor (k0) is 1.75×10^9 min^-1. The activated carbide slag shows better reused property than calcium hydroxide.