The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latte...The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of MФller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21x10^5 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coeffcient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coeffcients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.展开更多
A quasi-classical trajectory study of the H(^(2)S)+NO(X^(2)Π)→N(^(4)S)+OH(X^(2)Π) reaction kinetics and dynamics is reported on an accurate potential energy surface.The total integral cross sections of the reaction...A quasi-classical trajectory study of the H(^(2)S)+NO(X^(2)Π)→N(^(4)S)+OH(X^(2)Π) reaction kinetics and dynamics is reported on an accurate potential energy surface.The total integral cross sections of the reaction were calculated at the collision energy ranging from 2.00 e V to 2.80 e V.It was found that the total reaction integral cross section increases monotonically with the collision energy.Specifically at the collision energy range of 2.40-2.57 e V,our calculated results are in reasonably good agreement with the experimental data.The calculated thermal rate constants are in fairly good agreement with available experimental results.Through the trajectory analysis at the collision energy of 2.57 e V,it was found that the title reaction is dominated by the indirect trajectories(1.4 times more compared to the direct trajectories),which sheds light on the reaction dynamics of the title reaction in the high collision energy range.展开更多
In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematically. The reaction order of both furfural and xylose dehydration was determined and th...In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematically. The reaction order of both furfural and xylose dehydration was determined and the reaction activation energy was obtained by nonlinear regression. The effect of acetic acid concentration was also investi- gated. Reaction rate constants were gained. Reaction rate constant of xylose dehydration is kl = 4.189 × 10^10[A]^0.1676 axp (-108.5×1000/RT), reaction rate constant of furfural degradation is k2=1.271×10^10[A]0.1375 exp (-63.413×1000/RT)and reaction rate constant of condensation reaction is k3-3.4051×10^10[A]0.1676 exp (-104.99×1000/RT), Based on this, the kinetics equation of xylose dehydration into furfural in acetic acid was set up according to theory of Dunlop and Furfural generating rate equation is d[F]/dt=K1[x]0e-k1t-k2[F]-k3[X]0E-k1 1[F]展开更多
CF3CF=CF2 is a potential source of atmospheric trifluoroacetic acid(CF3C(O)OH).The kinetics of the reaction of the simplest Criegee intermediate(CH2OO)with CF3CF=CF2 was studied by using the OH laser-induced fluoresce...CF3CF=CF2 is a potential source of atmospheric trifluoroacetic acid(CF3C(O)OH).The kinetics of the reaction of the simplest Criegee intermediate(CH2OO)with CF3CF=CF2 was studied by using the OH laser-induced fluorescence method.At 10 torr,the rate co-efficients were measured to be(1.45±0.14)×10^-13,(1.18±0.11)×10^-13,(1.11±0.08)×10^-13,and(1.04±0.08)×10^-13·cm^3·molecule^-1·s^-1 at 283,298,308 and 318 K,respectively.The activation energy of(-1.66±0.21)kcal/mol was derived from the Arrhenius equation.No obvious pressure dependence was observed.展开更多
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on...Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.展开更多
Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate...Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.展开更多
Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQ...Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQCISD/3//MP2/cc-pVDZ level and the kinetic calculations were done using variational transition state theory with interpolated single-point energy (VTST-ISPE) approach. The calculated results show that the reaction proceeds primarily via the H-abstraction channel, while the Cl-addition channel is unfavorable due to the higher barriers. The improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT) was used to calculate the rate constants. The theoretical rate constants at room temperature are in general agreement with the experimental values. A three-parameter rate constant expression was fitted over a wide temperature range of 200-2000 K.展开更多
基金supported by the National Natural Science Foundation of China (No.21573027 to Jun Li)the US Department of Energy (DE-SC0015997 to Hua Guo)
文摘The hydrogen abstraction reaction F+CH3OH has two possible reaction pathways: HF+CH3O and HF+CH2OH. Despite the absence of intrinsic barriers for both channels, the former has a branching ratio comparable to the latter, which is far from the statistical limit of 0.25 (one out of four available H atoms). Furthermore, the measured branching ratio of the two abstraction channels spans a large range and is not quantitatively reproduced by previous theoretical predictions based on the transition-state theory with the stationary point information calculated at the levels of MФller-Plesset perturbation theory and G2. This work reports a theoretical investigation on the kinetics and the associated branching ratio of the two competing channels of the title reaction using a quasi-classical trajectory approach on an accurate full-dimensional potential energy surface (PES) fitted by the permutation invariant polynomial-neural network approach to ca. 1.21x10^5 points calculated at the explicitly correlated (F12a) version of coupled cluster singles doubles and perturbative triples (CCSD(T)) level with the aug-cc-pVDZ basis set. The calculated room temperature rate coeffcient and branching ratio of the HF+CH3O channel are in good agreement with the available experimental data. Furthermore, our theory predicts that rate coeffcients have a slightly negative temperature dependence, consistent with barrierless nature of the reaction.
基金supported by the National Natural Science Foundation of China(No.22073073)the Startup Foundation of Northwest UniversityThe Double First-Class University Construction Project of Northwest University。
文摘A quasi-classical trajectory study of the H(^(2)S)+NO(X^(2)Π)→N(^(4)S)+OH(X^(2)Π) reaction kinetics and dynamics is reported on an accurate potential energy surface.The total integral cross sections of the reaction were calculated at the collision energy ranging from 2.00 e V to 2.80 e V.It was found that the total reaction integral cross section increases monotonically with the collision energy.Specifically at the collision energy range of 2.40-2.57 e V,our calculated results are in reasonably good agreement with the experimental data.The calculated thermal rate constants are in fairly good agreement with available experimental results.Through the trajectory analysis at the collision energy of 2.57 e V,it was found that the title reaction is dominated by the indirect trajectories(1.4 times more compared to the direct trajectories),which sheds light on the reaction dynamics of the title reaction in the high collision energy range.
文摘In this paper kinetics of xylose dehydration into furfural using acetic acid as catalyst was studied comprehensively and systematically. The reaction order of both furfural and xylose dehydration was determined and the reaction activation energy was obtained by nonlinear regression. The effect of acetic acid concentration was also investi- gated. Reaction rate constants were gained. Reaction rate constant of xylose dehydration is kl = 4.189 × 10^10[A]^0.1676 axp (-108.5×1000/RT), reaction rate constant of furfural degradation is k2=1.271×10^10[A]0.1375 exp (-63.413×1000/RT)and reaction rate constant of condensation reaction is k3-3.4051×10^10[A]0.1676 exp (-104.99×1000/RT), Based on this, the kinetics equation of xylose dehydration into furfural in acetic acid was set up according to theory of Dunlop and Furfural generating rate equation is d[F]/dt=K1[x]0e-k1t-k2[F]-k3[X]0E-k1 1[F]
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (No.21873098)+2 种基金International Partnership Program of Chinese Academy of Sciences (No.121421KYSB20170012)the Chemical Dynamics Research Center (No.21688102)the Liaoning Revitalization Talents Program (No.XLYC1807248).
文摘CF3CF=CF2 is a potential source of atmospheric trifluoroacetic acid(CF3C(O)OH).The kinetics of the reaction of the simplest Criegee intermediate(CH2OO)with CF3CF=CF2 was studied by using the OH laser-induced fluorescence method.At 10 torr,the rate co-efficients were measured to be(1.45±0.14)×10^-13,(1.18±0.11)×10^-13,(1.11±0.08)×10^-13,and(1.04±0.08)×10^-13·cm^3·molecule^-1·s^-1 at 283,298,308 and 318 K,respectively.The activation energy of(-1.66±0.21)kcal/mol was derived from the Arrhenius equation.No obvious pressure dependence was observed.
基金supported by the National Natural Science Foundation of China (21573196)the Program for Zhejiang Leading Team of S&T Innovation (2011R50007)the Fundamental Research Funds of the Central Universities
文摘Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes:(1) equilibrium and kinetic rate constants of chemical reactions;(2) empirical polar parameters of ionic liquids;(3) spectral properties of probe molecules;(4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.
基金supported by the National Natural Science Foundation of China (21073232 & 50921002)the Fundamental Research Fund from the Chinese Central University (2010LKHX02)
文摘Hydrolysis and oxidation of formamidine disulfide in acidic medium were investigated using high-performance liquid chro- matography (HPLC) and mass spectrometry (MS) at 25 ~C. By controlling the slow reaction rate and choosing appropriate mobile phase, HPLC provides the unique advantages over other methods (UV-Vis, chemical separation) in species tracking and kinetic study. In addition to thiourea and formamidine sulfinic acid, two unreported products were also detected in the hy- drolysis reaction. Mass spectrometry measurement indicates these two products to be formamidine sulfenic acid and thiocyan- ogen with mass weights of 92.28 and 116,36, respectively. In the oxidation of formamidine disulfide by hydrogen peroxide, besides thiourea, formamidine sulfenic acid, formamidine sulfinic acid, thiocyanogen and urea, formamidine sulfonic acid and sulfate could be detected. The oxidation reaction was found to be first order in both forrnamidine disulfide and hydrogen per- oxide. The rate constants of hydrolysis and oxidation reactions were determined in the pH range of 1.5-3.0. It was found both rate constants are increased with the increasing of pH. Experimental curves of different species can be effectively simulated via a mechanism scheme for formamidine disulfide oxidation, including hydrolysis equilibrium of formamidine disulfide and irre- versible hydrolysis of formamidine sulfenic acid.
基金supported by the National Natural Science Foundation of China (20973077, 20303007)the Program for New Century Excellent Talents in University (NCET)
文摘Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQCISD/3//MP2/cc-pVDZ level and the kinetic calculations were done using variational transition state theory with interpolated single-point energy (VTST-ISPE) approach. The calculated results show that the reaction proceeds primarily via the H-abstraction channel, while the Cl-addition channel is unfavorable due to the higher barriers. The improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT) was used to calculate the rate constants. The theoretical rate constants at room temperature are in general agreement with the experimental values. A three-parameter rate constant expression was fitted over a wide temperature range of 200-2000 K.