钚因放射性衰变而出现自辐照老化效应,氦行为和氦泡行为是这种老化效应的集中体现,也是理解这种老化效应的重要途径。运用分子动力学模拟技术,研究了氦泡的释放过程。钚-钚、钚-氦和氦-氦相互作用势分别采用嵌入原子多体势(Embedded...钚因放射性衰变而出现自辐照老化效应,氦行为和氦泡行为是这种老化效应的集中体现,也是理解这种老化效应的重要途径。运用分子动力学模拟技术,研究了氦泡的释放过程。钚-钚、钚-氦和氦-氦相互作用势分别采用嵌入原子多体势(Embedded Atom Method,EAM)、Morse对势和Lennard.Jones对势,计算体系采用表面平板模型。研究结果表明:距离表面一定距离的氦泡中的氦原子发生释放,释放过程受距离表面的距离、温度、氦泡大小以及氦原子密度等因素的影响;展开更多
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model...The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.展开更多
Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not bee...Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.展开更多
A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fu...A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.展开更多
It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simul...It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.展开更多
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limit...In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.展开更多
The computer simulation is an important method for hydrokinetic hammer design. Various kinds of simulation measures with their technical characters and applications being taken during the computer aided design are enu...The computer simulation is an important method for hydrokinetic hammer design. Various kinds of simulation measures with their technical characters and applications being taken during the computer aided design are enumerated. Computer simulation supports plenty of valuable references to the designer. Each type of simulation process is used to explore the exact aspect of the performance of hydrokinetic hammer and each type of simulation method has its own excellences and deficiencies. Thus the integrative simulation methods based on modem computational technology are brought forward to obtain the perfect capability of the whole product. Along with the development of computer hardware and software, various kinds of platforms have been provided to different simulation methods that can be carried out with distinct working flows. The jet flow element is the core part of the hydrokinetic hammer. We can build the ideal simulation model of it by means of CFD ( computational fluid dynamics) technology. On the other hand, to set up the digital model of piston and hammer, the best way is to build the virtual prototype using automatic dynamic analysis of mechanical system. As a result of the argumentation, we think the technique of Virtual Prototype and CFD are the prime way to process the combined computer simulation for hydrokinetic hammer,展开更多
Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations o...Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations of femtosecond infrared vibrational-energy transfer and anisotropy measurements.The Jorgensen/TIP4P model is found to provide the best reproduction of clustering properties such as percentage of clustered ions,cluster-size distribution,concentration dependence of the water,and ion-rotation time constants.展开更多
文摘钚因放射性衰变而出现自辐照老化效应,氦行为和氦泡行为是这种老化效应的集中体现,也是理解这种老化效应的重要途径。运用分子动力学模拟技术,研究了氦泡的释放过程。钚-钚、钚-氦和氦-氦相互作用势分别采用嵌入原子多体势(Embedded Atom Method,EAM)、Morse对势和Lennard.Jones对势,计算体系采用表面平板模型。研究结果表明:距离表面一定距离的氦泡中的氦原子发生释放,释放过程受距离表面的距离、温度、氦泡大小以及氦原子密度等因素的影响;
基金Supported by the National 863 Project (2001AA642030-1) and Zhejiang Provincial Key Research Project (010007037).
文摘The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.
基金the National Key Technologies R&D Program (2001BA401A03-10).
文摘Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.
基金Supported by Shanghai Science and Technology Development (No. 993012003) and the National Natural Science Foundation of China (No.50206012).
文摘A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.
基金This work was supported by the National Natural Science Foundation of China (No.20774036) and the Fok Ying Tung Education Foundation (No.114018).
文摘It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.
基金Supported by the Science Foundation of Laboratory of Computational Physics, Science Foundation of China Academy of Engineering Physics under Grant Nos. 2009A0102005, 2009B0101012National Basic Research Program of China under Grant No. 2007CB815105+1 种基金National Natural Science Foundation of China under Grant Nos. 11074300, 11075021, and 11074303the Fundamental Research Funds for the Central Universities under Grant No. 2010YS03
文摘In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.
基金Project of State 863 Program(No.2006AA06A109-3-2-1)
文摘The computer simulation is an important method for hydrokinetic hammer design. Various kinds of simulation measures with their technical characters and applications being taken during the computer aided design are enumerated. Computer simulation supports plenty of valuable references to the designer. Each type of simulation process is used to explore the exact aspect of the performance of hydrokinetic hammer and each type of simulation method has its own excellences and deficiencies. Thus the integrative simulation methods based on modem computational technology are brought forward to obtain the perfect capability of the whole product. Along with the development of computer hardware and software, various kinds of platforms have been provided to different simulation methods that can be carried out with distinct working flows. The jet flow element is the core part of the hydrokinetic hammer. We can build the ideal simulation model of it by means of CFD ( computational fluid dynamics) technology. On the other hand, to set up the digital model of piston and hammer, the best way is to build the virtual prototype using automatic dynamic analysis of mechanical system. As a result of the argumentation, we think the technique of Virtual Prototype and CFD are the prime way to process the combined computer simulation for hydrokinetic hammer,
基金supported by the National Natural Science Foundation of China(21003117,21203178,21033008)the National Key Scientific Instrument and Equipment Development Projects of China(2011YQ09000505)
文摘Using a molecular dynamics simulation technique,we compared several commonly used ion-water models to describe the microscopic structures and dynamics in KSCN aqueous solutions.Results are compared with observations of femtosecond infrared vibrational-energy transfer and anisotropy measurements.The Jorgensen/TIP4P model is found to provide the best reproduction of clustering properties such as percentage of clustered ions,cluster-size distribution,concentration dependence of the water,and ion-rotation time constants.