Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
In this paper, a nonlinear mathematical model is presented for the transmission dynamics of HIV/AIDS in Cuba. Due to Cuba's highly successful national prevention program, we assume that the only mode of transmission ...In this paper, a nonlinear mathematical model is presented for the transmission dynamics of HIV/AIDS in Cuba. Due to Cuba's highly successful national prevention program, we assume that the only mode of transmission is through contact with those yet to be diagnosed with HIV. We find the equilibria of the governing nonlinear system, perform a linear stability analysis, and then provide results on global stability.展开更多
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.
基金Acknowledgments The authors would like to thank organizers Rongsong Liu, Michael Dillon, and Duane Porter of the Rocky Mountain Mathematics Consortium held at the University of Wyoming in June 2012, which was supported by the National Science Foundation and the Institute for Mathematics and Its Applications.
文摘In this paper, a nonlinear mathematical model is presented for the transmission dynamics of HIV/AIDS in Cuba. Due to Cuba's highly successful national prevention program, we assume that the only mode of transmission is through contact with those yet to be diagnosed with HIV. We find the equilibria of the governing nonlinear system, perform a linear stability analysis, and then provide results on global stability.