Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollut...Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollution problem for the industry and oil farms. The OWR is a source of substances of high value and can be used as a low-cost renewable energy. This work studied the behaviour of OWRs during the thermal decomposition process. The experiments of the slow pyrolysis process of three different waste olive products as olive pomace, olive tree pruning and olive kernels were performed under a nitrogen atmosphere at different heating rates, using a thermogravimetric balance. The samples were heated to a maximum temperature of 1,023 K, with four different heating rates of 2, 5, 10, 15 K/min. A comparison of different isoconversional (Flynn-Wall-Ozawa), not-isoconversional (Kissinger) model-free and model-fitting (Freeman-Carroll) methods to calculate the activation energy and pre-exponential factor is presented. In the Kissinger method the kinetic parameters were invariant for the whole pyrolysis process. While, in the case of Freeman-Carroll, it differs with change of the heating rate. The Flynn-Wall-Ozawa technique revealed the "not one-step" mechanism of reaction that occurs during the slow pyrolysis process. The kinetic data obtained in nitrogen atmosphere may provide more useful information for engineers for a better and complete description of the pyrolysis process and can be helpful to predict the kinetic model.展开更多
In this work, we investigate the dynamical behavior of a fractional-order toxin producing on a phytoplankton-zooplankton (TPPZ) system with nutrient cycling. We propose a mathematical system to model this situation....In this work, we investigate the dynamical behavior of a fractional-order toxin producing on a phytoplankton-zooplankton (TPPZ) system with nutrient cycling. We propose a mathematical system to model this situation. All the feasible equilibria of the system are obtained and the conditions for the existence of the equilibriums are determined. Local stability analysis of the TPPZ is studied by using the fractional Routh-Hurwitz stability conditions. Numerical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.展开更多
In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fr...In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fractional Routh-Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.展开更多
文摘Olive oil is an important food industry product in Mediterranean countries. Large quantities of OWR (olive waste residue) are generated during a two- or three-phase separation process. This represents a major pollution problem for the industry and oil farms. The OWR is a source of substances of high value and can be used as a low-cost renewable energy. This work studied the behaviour of OWRs during the thermal decomposition process. The experiments of the slow pyrolysis process of three different waste olive products as olive pomace, olive tree pruning and olive kernels were performed under a nitrogen atmosphere at different heating rates, using a thermogravimetric balance. The samples were heated to a maximum temperature of 1,023 K, with four different heating rates of 2, 5, 10, 15 K/min. A comparison of different isoconversional (Flynn-Wall-Ozawa), not-isoconversional (Kissinger) model-free and model-fitting (Freeman-Carroll) methods to calculate the activation energy and pre-exponential factor is presented. In the Kissinger method the kinetic parameters were invariant for the whole pyrolysis process. While, in the case of Freeman-Carroll, it differs with change of the heating rate. The Flynn-Wall-Ozawa technique revealed the "not one-step" mechanism of reaction that occurs during the slow pyrolysis process. The kinetic data obtained in nitrogen atmosphere may provide more useful information for engineers for a better and complete description of the pyrolysis process and can be helpful to predict the kinetic model.
文摘In this work, we investigate the dynamical behavior of a fractional-order toxin producing on a phytoplankton-zooplankton (TPPZ) system with nutrient cycling. We propose a mathematical system to model this situation. All the feasible equilibria of the system are obtained and the conditions for the existence of the equilibriums are determined. Local stability analysis of the TPPZ is studied by using the fractional Routh-Hurwitz stability conditions. Numerical simulations are carried out for a hypothetical set of parameter values to substantiate our analytical findings.
文摘In this paper, we investigate the dynamical behavior of a fractional order phytoplankton- zooplankton system. In this paper, stability analysis of the phytoplankton zooplankton model (PZM) is studied by using the fractional Routh-Hurwitz stability conditions. We have studied the local stability of the equilibrium points of PZM. We applied an efficient numerical method based on converting the fractional derivative to integer derivative to solve the PZM.