For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of l...For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of lattice dynamics is compared to experimental data demonstrating a noticeable difference between the spectra especially below 40 meV. In the case of Ti3SiC2 the DFT model is augmented with MD (molecular dynamics) simulations resulting in the measured and simulated spectra resembling one another more closely but still having significant differences below 40 meV. Within the experimental spectra, there are features up to and including 20 meV which are unaccounted for by the simulation. Tracing individual atoms generated by the computer models suggests anharmonic motion of Si within the Ti3SiC2. The results presented could explain differences between calculated elastic moduli using DFT harmonic lattice dynamics simulations and results from recent experiments.展开更多
There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute thre...There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.展开更多
The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the charact...The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.展开更多
文摘For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of lattice dynamics is compared to experimental data demonstrating a noticeable difference between the spectra especially below 40 meV. In the case of Ti3SiC2 the DFT model is augmented with MD (molecular dynamics) simulations resulting in the measured and simulated spectra resembling one another more closely but still having significant differences below 40 meV. Within the experimental spectra, there are features up to and including 20 meV which are unaccounted for by the simulation. Tracing individual atoms generated by the computer models suggests anharmonic motion of Si within the Ti3SiC2. The results presented could explain differences between calculated elastic moduli using DFT harmonic lattice dynamics simulations and results from recent experiments.
文摘There is an actual reality that underlies the relative reality of physics. The orbital system is shown to be the principle by which motion transforms space into matter. The support of the universe is the absolute three-stage hierarchy of particles, atoms, and gravitational systems. Below 1/c waves are dissociated into strands and neutrinos are separated as points of charge. The electron and positron are single strands with opposed helical turns. Protons and neutrons have a nucleus of positrinos and negatrinos surrounded by concentric shells of strands in 2"~ resonance. The orbital strands reverberate into space creating a field with gravitational and electromagnetic aspects. The orbital system defines matter, energy, motion, and time based on composition. The three stages have a constant field content but differ by field density and components.
基金Project (50708033) supported by the National Natural Science Foundation of ChinaProject (20070532067) supported by Doctoral Foundation of Ministry of Education of China
文摘The dynamic model experiment of the rock filling embankment was carried out to investigate the vibration compaction mechanism. The rock filling materials were compacted by the plate-vibrated compactor, and the characteristics of the rock filling materials, such as settlement, pressure change and response waveform, were measured by the dynamic earth pressure gauge and aceelerometer. Moreover, a new method for detecting the compactness of the rock filling embankment was proposed based on the maximum dry density and modulus of deformation. The results show that the process of vibration compaction includes compact, elastic deformation and loose stages, and the vibratory pressure transfers to the surroundings from the vibration center in non-linear rule. Furthermore, the test results obtained by the present method are basically in agreement with those obtained by the traditional method, and the maximum relative error between them is about 0.5%.