The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393...The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.展开更多
The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a const...The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.展开更多
In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a...In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.展开更多
In this paper,the reflection phenomenon of a vapor shock front(both sides of the front are in the vapor phase)in a van der Waals fluid is considered.Both the1-dimensional case and the multidimensional case are investi...In this paper,the reflection phenomenon of a vapor shock front(both sides of the front are in the vapor phase)in a van der Waals fluid is considered.Both the1-dimensional case and the multidimensional case are investigated.The authors find that under certain conditions,the reflected wave can be a single shock,or a single subsonic phase boundary,or one weak shock together with one subsonic phase boundary,which depends on the strength of the incident shock.This is different from the known result for the reflection of shock fronts in a gas dynamical system due to Chen in 1989.展开更多
基金Project (2011CB606301) supported by the National Basic Research Program of ChinaProject (20212339) supported by the Doctor Startup Foundation Program of Shenyang University,China
文摘The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.
基金Project (2012CBA01202) supported by the National Basic Research Program of ChinaProject (51174184) supported by the National Natural Science Foundation of China+2 种基金Project (KGZD-EW-201-1) supported by the Key Research Program of the Chinese Academy of SciencesProject (BK2013030) supported by Science and Technology Plan of Nantong City,ChinaProject (RERU2014016) supported by Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,China
文摘The extraction kinetics of Ce(Ⅳ) and Ce(Ⅳ)-F^- mixture systems from sulfuric solutions to n-heptane solution containing Bif-ILE[A336][P204]([trialkylmethylammonium][di-2-ethylhewanxylphosphinate]) with a constant interfacial area cell with laminar flow were studied,just to elucidate the extraction mechanism and the mass transfer models.The data were analyzed in terms of pseudo-first-order constants.The effects of stirring speed,specific interfacial area and temperature on the extraction rate in both systems were discussed,suggesting that the extractions were mixed bulk phases-interfacial control process.Supported by the experimental data,the corresponding rate equations for Ce(Ⅳ) extraction system and Ce(Ⅳ)-F^- mixture extraction system were obtained.The experimental results indicated the rate-controlling step.The kinetics model was deduced from the rate-controlling step and consistent with the rate equation.
文摘In aerodynamics, the laminar or turbulent regime of a boundary layer has a strong influence on friction or heat transfer. In practical applications, it is sometimes necessary to trip the transition to turbulent, and a common way is by use of a roughness element (e.g. a step) on the wall. The present paper is concerned with the numerical im- plementation of such a trip in large-eddy simulations. The study is carried out on a flat-plate boundary layer con- figuration, with Reynolds number Rex=l.3x 106. First, this work brings the opportunity to introduce a practical methodology to assess convergence in large-eddy simulations. Second, concerning the trip implementation, a volume source term is proposed and is shown to yield a smoother and faster transition than a grid step. Moreover, it is easier to implement and more adaptable. Finally, two subgrid-scale models are tested: the WALE model of Nic0ud and Ducros (Flow Turbul. Combust., vol. 62, 1999) and the shear-improved Smagorinsky model of Ldv^que et al. (J. Fluid Mech., vol. 570, 2007). Both models allow transition, but the former appears to yield a faster transition and a better prediction of friction in the turbulent regime.
基金supported by the National Natural Science Foundation of China(No.10901107)the Innovation Program of Shanghai Municipal Education Commission(No.213ZZ136)
文摘In this paper,the reflection phenomenon of a vapor shock front(both sides of the front are in the vapor phase)in a van der Waals fluid is considered.Both the1-dimensional case and the multidimensional case are investigated.The authors find that under certain conditions,the reflected wave can be a single shock,or a single subsonic phase boundary,or one weak shock together with one subsonic phase boundary,which depends on the strength of the incident shock.This is different from the known result for the reflection of shock fronts in a gas dynamical system due to Chen in 1989.