Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference be...Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference between the fluctuating flow rate and pressure drop was analyzed for laminar flow.Analysis showed that the phase difference changes with the period of the flow fluctuation, the pipe radius, the density and the dynamic viscosity of the liquid.Fluctuating pipe flow was then numerically simulated.Results of the numerical simulation were compared with theoretical values and experimental results.It was shown that, when the flow rate fluctuates with time as a sine wave, the pressure drop fluctuates with the same periodicity, and there is a phase difference between them.展开更多
This paper studies the adiabatic dynamics of the breather soliton of the sine-Gordon equation. The integrals of motion are found and then used in soliton perturbation theory to derive the differential equation governi...This paper studies the adiabatic dynamics of the breather soliton of the sine-Gordon equation. The integrals of motion are found and then used in soliton perturbation theory to derive the differential equation governing the soliton velocity. Time-dependent functions arise and their properties are studied. These functions are found to be bounded and periodic and affect the soliton velocity. The soliton velocity is numerically plotted against time for different combinations of initial velocities and perturbation terms.展开更多
A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of m...A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of measured TJPD between two strong acids(or alkalies) maintained at different temperatures increases with increasing of the temperature difference between the two electrolytes over the range from 0 to 40 °C. In strong acids, the hot end always has the lower potential while in strong alkalies, the cold end has the lower potential. This is because the ions of fast diffusion rate contribute most to the TJPD. Our results demonstrate the importance of the correction for TJPD in deriving the kinetic parameters when studying the temperature effect on reaction kinetics.展开更多
As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study ...As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study analyzed the near-field unsteady flow around a pantograph using a large-eddy simulation(LES) with high-order finite difference schemes. The far-field aerodynamic noise from a pantograph was predicted using a computational fluid dynamics(CFD)/Ffowcs Williams-Hawkings(FW-H) acoustic analogy. The surface oscillating pressure data were also used in a boundary element method(BEM) acoustic analysis to predict the aerodynamic noise sources of a pantograph and the far-field sound radiation. The results indicated that the main aerodynamic noise sources of the pantograph were the panhead, base frame and knuckle. The panhead had the largest contribution to the far-field aerodynamic noise of the pantograph. The vortex shedding from the panhead generated tonal noise with the dominant peak corresponding to the vortex shedding frequency and the oscillating lift force exerted back on the fluid around the panhead.Additionally, the peak at the second harmonic frequency was associated with the oscillating drag force. The contribution of the knuckle-downstream direction to the pantograph aerodynamic noise was less than that of the knuckle-upstream direction of the pantograph, and the average sound pressure level(SPL) was 3.4 dBA. The directivity of the noise radiated exhibited a typical dipole pattern in which the noise directivity was obvious at the horizontal plane of θ=0°,the longitudinal plane of θ=120°,and the vertical plane of θ=90°.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50806014the Foundation of Bubble Physics and Natural Circulation Laboratory of China under Grant No.51482010105CB0101 and No.9140C7105020805
文摘Experiments were conducted to study characteristics of flow when flow is fluctuating.The experimental results showed a phase difference between the flow rate and the pressure drop fluctuations.This phase difference between the fluctuating flow rate and pressure drop was analyzed for laminar flow.Analysis showed that the phase difference changes with the period of the flow fluctuation, the pipe radius, the density and the dynamic viscosity of the liquid.Fluctuating pipe flow was then numerically simulated.Results of the numerical simulation were compared with theoretical values and experimental results.It was shown that, when the flow rate fluctuates with time as a sine wave, the pressure drop fluctuates with the same periodicity, and there is a phase difference between them.
文摘This paper studies the adiabatic dynamics of the breather soliton of the sine-Gordon equation. The integrals of motion are found and then used in soliton perturbation theory to derive the differential equation governing the soliton velocity. Time-dependent functions arise and their properties are studied. These functions are found to be bounded and periodic and affect the soliton velocity. The soliton velocity is numerically plotted against time for different combinations of initial velocities and perturbation terms.
基金supported by the National Basic Research Program of China (2015CB932301)National Natural Science Foundation of China (21273215, 91545124)
文摘A novel method has been designed and exploited to determine the thermal junction potential difference(TJPD) between two acids or alkalies of the same composition but with different temperature. The absolute value of measured TJPD between two strong acids(or alkalies) maintained at different temperatures increases with increasing of the temperature difference between the two electrolytes over the range from 0 to 40 °C. In strong acids, the hot end always has the lower potential while in strong alkalies, the cold end has the lower potential. This is because the ions of fast diffusion rate contribute most to the TJPD. Our results demonstrate the importance of the correction for TJPD in deriving the kinetic parameters when studying the temperature effect on reaction kinetics.
基金supported by the High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)the National Key Research and Development Program of China(Grant No.2016YFB1200403)+1 种基金the National Natural Science Foundation of China(Grant Nos.51475394&51605397)the Research Project of State Key Laboratory of Traction Power(Grant No.2016TPL_T02)
文摘As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study analyzed the near-field unsteady flow around a pantograph using a large-eddy simulation(LES) with high-order finite difference schemes. The far-field aerodynamic noise from a pantograph was predicted using a computational fluid dynamics(CFD)/Ffowcs Williams-Hawkings(FW-H) acoustic analogy. The surface oscillating pressure data were also used in a boundary element method(BEM) acoustic analysis to predict the aerodynamic noise sources of a pantograph and the far-field sound radiation. The results indicated that the main aerodynamic noise sources of the pantograph were the panhead, base frame and knuckle. The panhead had the largest contribution to the far-field aerodynamic noise of the pantograph. The vortex shedding from the panhead generated tonal noise with the dominant peak corresponding to the vortex shedding frequency and the oscillating lift force exerted back on the fluid around the panhead.Additionally, the peak at the second harmonic frequency was associated with the oscillating drag force. The contribution of the knuckle-downstream direction to the pantograph aerodynamic noise was less than that of the knuckle-upstream direction of the pantograph, and the average sound pressure level(SPL) was 3.4 dBA. The directivity of the noise radiated exhibited a typical dipole pattern in which the noise directivity was obvious at the horizontal plane of θ=0°,the longitudinal plane of θ=120°,and the vertical plane of θ=90°.