Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissi...Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissions and huge costs involved in controlling the aftermath situations. Some of the research attempts made to prevent and control coal mine fires and spontaneous combustion in thick seams worked with bord and pillar mining methods are presented in this paper. In the study, computational fluid dynamics(CFD) modelling techniques were used to simulate and assess the effects of various mining methods, layouts, designs, and different operational and ventilation parameters on the flow of goaf gases in BG panels. A wide range of parametric studies were conducted to develop proactive strategies to control and prevent ingress of oxygen into the goaf area preventing spontaneous combustion and mine fires.展开更多
The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate co...The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 ℃, elastase concentration 1 × 10^4 U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasingelastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods.展开更多
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj...The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.展开更多
Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external bi...Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.展开更多
Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and te...Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.展开更多
As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexibl...As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.展开更多
A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the pro...A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the process are Boolean functions, the optimal control problem related to the process can be solved by relating between the transfer functions and the objective functional. An analogue of Bellman function for the optimal control problem mentioned is defined and consequently suitable Bellman equation is constructed.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model ba...The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one.展开更多
In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensiona...In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.展开更多
This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous ...This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.展开更多
Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performan...Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performance even at large angles of attack.Thus,this research aims to give guidance on optimizing the design of this kind of airfoil with high lift coefficients.Using computational fluid dynamics(CFD)technique,the CFD simulation results have been compared with the experimental results available in the literature,and then the SST two-equation model is selected as the appropriate turbulence model.At a given cylinder surface velocity ratio,the cylinder diameter d,the drop height of trailing edgeδand the curvatures of the pressure and suction surfaces of the airfoil are regarded as the optimal design parameters and the airfoil lift coefficient is considered as the optimization objective function.Therefore,using orthogonal optimization method,we herein develop a new design of airfoil favorable for having a rotating leading edge.It has been numerically proven that the resulting airfoil has good capability of achieving a substantially superior performance when compared to the airfoils of the prior art.展开更多
Using the particle swarm optimization algorithm on crystal structure prediction,we first predict that Mg Y alloy undergoes a first-order phase transition from Cs Cl phase to P4/NMM phase at about 55 GPa with a small v...Using the particle swarm optimization algorithm on crystal structure prediction,we first predict that Mg Y alloy undergoes a first-order phase transition from Cs Cl phase to P4/NMM phase at about 55 GPa with a small volume collapse of 2.63%.The dynamical stability of P4/NMM phase at 55 GPa is evaluated by the phonon spectrum calculation and the electronic structure is discussed.The elastic constants are calculated,after which the bulk moduli,shear moduli,Young's modui,and Debye temperature are derived.The brittleness/ductile behavior,and anisotropy of two phases under pressure are discussed in details.Our results show that external pressure can change the brittle behavior to ductile at10 GPa for Cs Cl phase and improve the ductility of Mg Y alloy.As pressure increases,the elastic anisotropy in shear of Cs Cl phase decreases,while that of P4/NMM phase remains nearly constant.The elastic anisotropic constructions of the directional dependences of reciprocals of bulk modulus and Young's modulus are also calculated and discussed.展开更多
A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A...A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.展开更多
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
文摘Spontaneous combustion(sponcom) is one of the issues of concern with the blasting gallery(BG) method of coal mining and has the potential to cause fires, and impact on production and safety, greenhouse gas(GHG) emissions and huge costs involved in controlling the aftermath situations. Some of the research attempts made to prevent and control coal mine fires and spontaneous combustion in thick seams worked with bord and pillar mining methods are presented in this paper. In the study, computational fluid dynamics(CFD) modelling techniques were used to simulate and assess the effects of various mining methods, layouts, designs, and different operational and ventilation parameters on the flow of goaf gases in BG panels. A wide range of parametric studies were conducted to develop proactive strategies to control and prevent ingress of oxygen into the goaf area preventing spontaneous combustion and mine fires.
基金Project (No. Y304203) supported by the Natural Science Foundationof Zhejiang Province, China
文摘The solubilization of elastin by Bacillus licheniformis elastase cannot be analyzed by conventional kinetic methods because the biologically relevant substrate is insoluble and the concentration of enzyme-substrate complex has no physical meaning. In this paper we report the optimization of elastolysis conditions and analysis of elastolytic kinetics. Our results indicated that the hydrolyzing temperature and time are very important factors affecting elastolysis rate. The optimized conditions using central composite design were as follows: elastolysis temperature 50 ℃, elastase concentration 1 × 10^4 U/ml, elastin 80 mg, elastolytic time 4 h. Investigation of the effects of substrate content, elastase concentration and pH was also revealed that low or high elastin content inhibits the elastolysis process. Increasingelastase improves elastin degradation, but high elastase may change the kinetics characterization. Alkaline environment can decrease elastin degradation rate and pH may affect elastolysis by changing elastase reaction pH. To further elucidate the elastolysis process, the logistic model was used to elastolysis kinetics study showing clearly that the logistic model can reasonably explain the elastolysis process, especially under lower elastase concentration. However, there is still need for more investigations with the aid of other methods, such as biochemical and molecular methods.
基金Projects(51005115, 51005248) supported by the National Natural Science Foundation of ChinaProject(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of State Key Laboratory of Mechanical Transmission in Chongqing University, ChinaProject(QC201101) supported by Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province, China
文摘The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.
文摘Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.
文摘Environmental micro-vibration is one of the key factors impacting the running of electronic workshop.Low frequency micro-vibration has a significant influence on the normal operation of high precision machining and testing equipment,and even causes irreversible damage to the equipment.Micro-vibration testing and response analysis are important to guide the vibration isolation design and ensure the stable operation of various precision equipment in the workshop.Parameters of Davidenkov model are fitted based on whale swarm optimization algorithm,and its applicability is verified.At the same time,taking the testing project of an electronic workshop raw land as an example,the micro-vibration response is analyzed.The results show that the nonlinear constitutive model constructed by whale optimization algorithm can simulate the dynamic nonlinear behavior of soil under the action of micro-vibration better.Compared with the traditional equivalent linearization method,the nonlinear constitutive model based on the whale optimization algorithm has a smaller acceleration response value.It can effectively suppress the“virtual resonance effect”produced by the equivalent linearization method.
基金supported by the Foundation of National Key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics(No.614222004030917)。
文摘As one of the most important steps in the design of bearing-less rotor systems,the design of flexible beam has received much research attention.Because of the very complex working environment of helicopter,the flexible beam should satisfy both the strength and dynamic requirements.However,traditional optimization research focused only on either the strength or dynamical characteristics.To sufficiently improve the performance of the flexible beam,both aspects must be considered.This paper proposes a two-stage optimization method based on the Hamilton variational principle:Variational asymptotic beam section analysis(VABS)program and genetic algorithm(GA).Consequently,a two-part analysis model based on the Hamilton variational principle and VABS is established to calculate section characteristics and structural dynamics characteristics,respectively.Subsequently,the two parts are combined to establish a two-stage optimization process and search with GA to obtain the best dynamic characteristics combinations.Based on the primary optimization results,the section characteristics of the flexible beam are further optimized using GA.The optimization results show that the torsional stiffness decreases by 36.1%compared with the full 0°laying scheme without optimization and the dynamic requirements are achieved.The natural frequencies of flapping and torsion meet the requirements(0.5 away from the passing frequencies of the blade,0.25 away from the excitation force frequency,and the flapping and torsion frequencies keep a corresponding distance).The results indicate that the optimization method can significantly improve the performance of the flexible beam.
文摘A process represented by nonlinear multi-parametric binary dynamic system is investigated in this work. This process is characterized by the pseudo Boolean objective functional. Since the transfer functions on the process are Boolean functions, the optimal control problem related to the process can be solved by relating between the transfer functions and the objective functional. An analogue of Bellman function for the optimal control problem mentioned is defined and consequently suitable Bellman equation is constructed.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
文摘The performance of the power assist, global optimization solved by dynamic programming (DP) method, Chery and Insight control strategies are analyzed using the mild parallel hybrid electric vehicle (PHEV) model based on Insight structure. The influence of the four control strategies to the load power of the electric motor system used on parallel hybrid electric vehicle is studied. It is found that 80 percent of the motor load power points are under 1/5 of the electric peak power. The motor load power of the power assist control strategy is distributed in the widest range during generating operation, and the motor load power of the global optimization control strategy has the smallest one.
文摘In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.
基金supported by the National Natural Science Foundation of China(Grant Nos.51206003 and 51376009)the National Science Foundation for Post-doctoral Scientists of China(Grant Nos.2012M510267 and 2013T60035)
文摘This paper presents the fundamentals of a continuous adjoint method and the applications of this method to the aerodynamic design optimization of both external and internal flows.General formulation of the continuous adjoint equations and the corresponding boundary conditions are derived.With the adjoint method,the complete gradient information needed in the design optimization can be obtained by solving the governing flow equations and the corresponding adjoint equations only once for each cost function,regardless of the number of design parameters.An inverse design of airfoil is firstly performed to study the accuracy of the adjoint gradient and the effectiveness of the adjoint method as an inverse design method.Then the method is used to perform a series of single and multiple point design optimization problems involving the drag reduction of airfoil,wing,and wing-body configuration,and the aerodynamic performance improvement of turbine and compressor blade rows.The results demonstrate that the continuous adjoint method can efficiently and significantly improve the aerodynamic performance of the design in a shape optimization problem.
基金supported by National Natural Science Foundation of China(50836006)Shanghai Science and Technology Committee with Grant No.09JC1405800Program for Changjiang Scholars and Innovative Research Team in University with Grant No.IRT0844
文摘Based on the theory of moving surface boundary layer control(MSBC),a concept of an airfoil having a rotating cylinder at the leading edge has been developed and experimentally proven to have good aerodynamic performance even at large angles of attack.Thus,this research aims to give guidance on optimizing the design of this kind of airfoil with high lift coefficients.Using computational fluid dynamics(CFD)technique,the CFD simulation results have been compared with the experimental results available in the literature,and then the SST two-equation model is selected as the appropriate turbulence model.At a given cylinder surface velocity ratio,the cylinder diameter d,the drop height of trailing edgeδand the curvatures of the pressure and suction surfaces of the airfoil are regarded as the optimal design parameters and the airfoil lift coefficient is considered as the optimization objective function.Therefore,using orthogonal optimization method,we herein develop a new design of airfoil favorable for having a rotating leading edge.It has been numerically proven that the resulting airfoil has good capability of achieving a substantially superior performance when compared to the airfoils of the prior art.
基金Supported by the Henan Joint Funds of the National Natural Science Foundation of China under Grant Nos.U1304612,U1404608the National Natural Science Foundation of China under Grant Nos.51501093,51374132+2 种基金the Special Fund of the Theoretical Physics of China under Grant No.11247222Postdoctoral Science Foundation of China under Grant No.2015M581767Young Core Instructor Foundation of Henan Province under Grant No.2015GGJS-122
文摘Using the particle swarm optimization algorithm on crystal structure prediction,we first predict that Mg Y alloy undergoes a first-order phase transition from Cs Cl phase to P4/NMM phase at about 55 GPa with a small volume collapse of 2.63%.The dynamical stability of P4/NMM phase at 55 GPa is evaluated by the phonon spectrum calculation and the electronic structure is discussed.The elastic constants are calculated,after which the bulk moduli,shear moduli,Young's modui,and Debye temperature are derived.The brittleness/ductile behavior,and anisotropy of two phases under pressure are discussed in details.Our results show that external pressure can change the brittle behavior to ductile at10 GPa for Cs Cl phase and improve the ductility of Mg Y alloy.As pressure increases,the elastic anisotropy in shear of Cs Cl phase decreases,while that of P4/NMM phase remains nearly constant.The elastic anisotropic constructions of the directional dependences of reciprocals of bulk modulus and Young's modulus are also calculated and discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 11032002 and 91016013)the program for New Century Excellent Talents in University+1 种基金National Basic Research Program of China (Grant No. 2010CB832706)the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No. ZDKT10-03a)
文摘A visco-plastic rate-dependent homogenization theory for particle-reinforced composites was derived and the equivalent elastic constants and the equivalent visco-plastic parameters of these composites were obtained. A framework of homogenization the- ory for particle-reinforced W-Ni-Fe composites, a kind of tungsten alloy, was established. Based on the homogenization theory and a fixed-point iteration method, a unit cell model with typical microstructnres of the composite was established by using dynamic analysis program. The effects of tungsten content, tungsten particle shape and particle size and interface strength on the mechanical properties and the crack propagation of the W-Ni-Fe composite are analyzed under quasi-static and dynamic loadings. The stress-strain curves of the composite are given and the relation between the macro-mechanical characteristics and the microstructure parameters is explored, which provides an important theoretical basis for the optimization of the W-Ni-Fe composites.