A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 ...3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data.展开更多
Based on the platform of Matlab and the theory of digital signal processing, we propose a method in the cepstrum domain for dynamic load spectra identification of machinery. We demonstrate that the dynamic load spectr...Based on the platform of Matlab and the theory of digital signal processing, we propose a method in the cepstrum domain for dynamic load spectra identification of machinery. We demonstrate that the dynamic load spectra can be identified from the response signal of the system, based on cepstra. An ARMA model is built based on the harmonic retrieval by high-order spectra. The coefficients of a Green function are determined and the window width can be estimated. Finally the effectiveness of the method is validated by simulation results.展开更多
A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eig...A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.展开更多
In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the bla...In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.展开更多
The combustion of conveyor belt is a leading factor of mine fire. In this paper, the pyrolysis properties of ordinary conveyor belt and fire-resistant belt were studied experimentally with thermo-gravimetric analysis ...The combustion of conveyor belt is a leading factor of mine fire. In this paper, the pyrolysis properties of ordinary conveyor belt and fire-resistant belt were studied experimentally with thermo-gravimetric analysis and derivative thermo-gravimetric analysis, and the curves of pyrolysis properties were achieved. On this basis, the activation energy and reaction order of pyrolysis were obtained in combination with theoretical analysis, aiming to provide data for further numerical simulation and simulating experiment of mine fire.展开更多
Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological charac...Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals展开更多
The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover con...The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.展开更多
Since computers and software have spread into all fields of industry, extensive efforts are currently made in order to improve the safety by applying certain numerical solutions. For many engineering problems involvin...Since computers and software have spread into all fields of industry, extensive efforts are currently made in order to improve the safety by applying certain numerical solutions. For many engineering problems involving shock and impact, there is no single ideal numerical method that can reproduce the various regimes of a problem. An approach wherein different techniques may be applied within a single numerical analysis can provide the "best" solution in terms of accuracy and efficiency. This paper presents a set of numerical simulations of ballistic tests which analyze the effects of soda lime glass laminates. The goal is to find an appropriate solver technique for simulating brittle materials and thereby improve bullet-proof glass to meet current challenges. To have the correct material model available is not enough. In this work, the main solver technologies are compared to create a perfect simulation model for soda lime glass laminates. The calculation should match ballistic trials and be used as the basis for further studies. These numerical simulations are performed with the nonlinear dynamic analysis computer code ANSYS AUTODYN.展开更多
Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influ...Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.展开更多
The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especi...The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.展开更多
In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed u...In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.展开更多
Using the unsteady incompressible Navier-Stokes equation as the governing equation, the large eddy simulation (LES) model is implemented to investigate the shedding of vortices, the flow pattern of turbulence, the uns...Using the unsteady incompressible Navier-Stokes equation as the governing equation, the large eddy simulation (LES) model is implemented to investigate the shedding of vortices, the flow pattern of turbulence, the unsteady pressure fluctuation and the time history of the lift coefficient and drag coefficient of hoistable masts with various mast shapes and various arrangements in this paper. Combining the FFT, combined time-frequency transform and wavelet power spectrum analysis, the characteristics of unsteady pressure can be obtained in both time and frequency domain. It shows that the main frequency of pressure fluctuation is near the frequency of vortex shedding in time domain using the FFT method. It can be inferred from the combined time-frequency transform that the unsteady pressure fluctuation has obviously the peak value and the second peak value in time domain. It could indicate that the fluctuation power varies from the fluctuation frequency through the power spectrum analysis. By the data analysis, it shows that the vortex shedding is the dominant cause of the periodically pressure fluctuation. And the interaction pattern of wake and interplay between wake and the walls of masts under different arrangements are also discussed in this paper.展开更多
This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are describ...This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are described with RNG k-e turbulence model and the numerical simulation is carded out with Fluent software. The influence of sail's structure is analyzed including plate, separation type and height/width ratio. The lift coefficients and drag coefficients of the simulated turbine sail are calculated under different rotation angles, suction intensity and separation plate position. The calculated results are compared with the wind tunnel experimental results, which verifies the feasibility of the numerical results and establishes a foundation for the optimal design of turbine sails.展开更多
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(11672055,11272072).
文摘3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data.
基金Project 59775004 supported by National Natural Science Foundation of China
文摘Based on the platform of Matlab and the theory of digital signal processing, we propose a method in the cepstrum domain for dynamic load spectra identification of machinery. We demonstrate that the dynamic load spectra can be identified from the response signal of the system, based on cepstra. An ARMA model is built based on the harmonic retrieval by high-order spectra. The coefficients of a Green function are determined and the window width can be estimated. Finally the effectiveness of the method is validated by simulation results.
基金Financial support from National Nature Science Foundation of China (Grant No. 41572303, 41520104002)Chinese Academy of Sciences “Light of West China” Program and Youth Innovation Promotion Association
文摘A catastrophic landslide occurred at Xinmo village in Maoxian County, Sichuan Province,China, on June 24, 2017. A 2.87×106 m3 rock mass collapsed and entrained the surface soil layer along the landslide path. Eighty-three people were killed or went missing and more than 103 houses were destroyed. In this paper, the geological conditions of the landslide are analyzed via field investigation and high-resolution imagery. The dynamic process and runout characteristics of the landslide are numerically analyzed using a depth-integrated continuum method and Mac Cormack-TVD finite difference algorithm.Computational results show that the evaluated area of the danger zone matchs well with the results of field investigation. It is worth noting that soil sprayed by the high-speed blast needs to be taken into account for such kind of large high-locality landslide. The maximum velocity is about 55 m/s, which is consistent with most cases. In addition, the potential danger zone of an unstable block is evaluated. The potential risk area evaluated by the efficient depthintegrated continuum method could play a significant role in disaster prevention and secondary hazard avoidance during rescue operations.
基金financially supported by National "863" Program (Grant No.2007AA05Z450, No. 200805040)National S&T Program (No.2008BAA15B04)+2 种基金2010 National Ocean Special Funds(No.ZJME2010GC01, No. ZJME2010CY01, No.GHME2010GC02)supported by the Fundamental Research Funds of the Universities(No.HEUCF130105)supported by "111 project" foundation(No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.
文摘The combustion of conveyor belt is a leading factor of mine fire. In this paper, the pyrolysis properties of ordinary conveyor belt and fire-resistant belt were studied experimentally with thermo-gravimetric analysis and derivative thermo-gravimetric analysis, and the curves of pyrolysis properties were achieved. On this basis, the activation energy and reaction order of pyrolysis were obtained in combination with theoretical analysis, aiming to provide data for further numerical simulation and simulating experiment of mine fire.
基金Supported by Science Foundations of Laboratory of Computational Physics and China Academy of Engineering Physics under Grant Nos.2009A0102005 and 2009B0101012National Science Foundation of China under Grant Nos.10702010,10775018,and 10604010
文摘Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals
文摘The hydrodynamic analysis of a new semi-small waterplane area twin hull (SWATH) suitable for various applications such as small and medium size passenger ferries is presented. This may be an attractive crossover configuration resulting from the merging of two classical shapes: a conventional SWATH and a fast catamaran. The final hull design exhibits a wedge-like waterline shape with the maximum beam at the stem; the hull ends with a very narrow entrance angle, has a prominent bulbous bow typical of SWATH vessels, and features full stern to arrange waterjet propellers. Our analysis aims to perform a preliminary assessment of the hydrodynamic performance of a hull with such a complex shape both in terms of resistance of the hull in calm water and seakeeping capability in regular head waves and compare the performance with that of a conventional SWATH. The analysis is performed using a boundary element method that was preliminarily validated on a conventional SWATH vessel.
文摘Since computers and software have spread into all fields of industry, extensive efforts are currently made in order to improve the safety by applying certain numerical solutions. For many engineering problems involving shock and impact, there is no single ideal numerical method that can reproduce the various regimes of a problem. An approach wherein different techniques may be applied within a single numerical analysis can provide the "best" solution in terms of accuracy and efficiency. This paper presents a set of numerical simulations of ballistic tests which analyze the effects of soda lime glass laminates. The goal is to find an appropriate solver technique for simulating brittle materials and thereby improve bullet-proof glass to meet current challenges. To have the correct material model available is not enough. In this work, the main solver technologies are compared to create a perfect simulation model for soda lime glass laminates. The calculation should match ballistic trials and be used as the basis for further studies. These numerical simulations are performed with the nonlinear dynamic analysis computer code ANSYS AUTODYN.
文摘Aiming at the issue that mass of gas emission from mining gob and the gas exceeded in working face, gob air leakage field and gas migration regularity in downlink ventilation was studied. In consideration of the influence of natural wind pressure to analyze the stope face differential pressure, gob air leakage field distribution and gas migration regularity theoretically. Established a two-dimensional physical model with one source and one doab, and applied computational fluid dynamics analysis software Fluent to do numerical simulation, analyzed and contrasted to the areas of gob air leakage on size and gas emission from gob to working face on strength when using the downlink ventilation and uplink ventilation. When applied downward ventilation in stope face, the air leakage field of gob nearly working face, and the air leakage intensity were smaller than uplink, this can effectively reduce the gas emission from gob to working face; when used downlink ventilation, the air leakage airflow carry the lower amount of gas to doab than uplink ventilation, and more easily to mix the gas, reduced the possibility of gas accumulation in upper comer and the stratified flows, it can provide protection to mine with safe and effective production.
文摘The flow of pseudoplastic power-law fluids with different flow indexes at a microchannel plate was studied using computational fluid dynamic simulation.The velocity distribution along the microchannel plate and especially in the microchannel slits,flow pattern along the outlet arc and the pressure drop through the whole of microchannel plate were investigated at different power-law flow indexes.The results showed that the velocity profile in the microchannel slits for low flow index fluids was similar to the plug flow and had uniform pattern.Also the power-law fluids with lower flow indexes had lower stagnation zones near the outlet of the microchannel plate.The pressure drop through the microchannel plate showed huge differences between the fluids.The most interesting result was that the pressure drops for power-law fluids were very smaller than that of Newtonian fluids.In addition,the heat transfer of the fluids through the microchannel with different channel numbers in a wide range of Reynolds number was investigated.For power-law fluid with flow index(n=0.4),the Nusselt number increases continuously as the number of channels increases.The results highlight the potential use of using pseudoplastic fluids in the microheat exchangers which can lower the pressure drop and increase the heat transfer efficiency.
基金Supported by the National Key Technology R&D Program in 11 th Five Years Plan of China(2006BAK03B06)
文摘In order to determine how a roadway withstands a momentum wave and determinethe extent of damage to rock surrounding the roadway under different force wavepeak impacts,the roadway dynamic response state was analysed using numerical simulationmethod.The roadway's critical peak force wave and fracture region under dynamicwave action were put forward.It is concluded that the method has practical value to roadwaysupport and rockburst prevention.
文摘Using the unsteady incompressible Navier-Stokes equation as the governing equation, the large eddy simulation (LES) model is implemented to investigate the shedding of vortices, the flow pattern of turbulence, the unsteady pressure fluctuation and the time history of the lift coefficient and drag coefficient of hoistable masts with various mast shapes and various arrangements in this paper. Combining the FFT, combined time-frequency transform and wavelet power spectrum analysis, the characteristics of unsteady pressure can be obtained in both time and frequency domain. It shows that the main frequency of pressure fluctuation is near the frequency of vortex shedding in time domain using the FFT method. It can be inferred from the combined time-frequency transform that the unsteady pressure fluctuation has obviously the peak value and the second peak value in time domain. It could indicate that the fluctuation power varies from the fluctuation frequency through the power spectrum analysis. By the data analysis, it shows that the vortex shedding is the dominant cause of the periodically pressure fluctuation. And the interaction pattern of wake and interplay between wake and the walls of masts under different arrangements are also discussed in this paper.
文摘This paper firstly introduces the structure and working principle of turbine sail. Numerical model of a turbine sail is established with Gambit software. The aerodynamic characteristics of the turbine sail are described with RNG k-e turbulence model and the numerical simulation is carded out with Fluent software. The influence of sail's structure is analyzed including plate, separation type and height/width ratio. The lift coefficients and drag coefficients of the simulated turbine sail are calculated under different rotation angles, suction intensity and separation plate position. The calculated results are compared with the wind tunnel experimental results, which verifies the feasibility of the numerical results and establishes a foundation for the optimal design of turbine sails.