In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o...In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.展开更多
Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal fac...Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal face and, on this basis, established an automatic control model of powered supports for the coal plough face. We introduced the working principle of the powered support control system of the plough at the mining face. We established three advanced characteristics of this control system: response speed, reliability and easy maintenance of the system. As well, we briefly introduced, the principal function of primary and subordinate controllers and the realization of the communication system by a Single Bus. Ten controllers were constructed and tested in our laboratorium. The results show that the control model is practical and meets actual conditions. It provides a theoretical basis for designing a comouter control system for a oowered support system of a plough at a mining face.展开更多
The simple dynamic model is often adopted to deal with control questions in research on semi-active suspension. The model has more theoretic meanings than authentic ones because of difference between practical and phy...The simple dynamic model is often adopted to deal with control questions in research on semi-active suspension. The model has more theoretic meanings than authentic ones because of difference between practical and physical models. The virtual prototype has remarkable advantages in its application simulation processes. It is not only faster and more veracious, but also of better visualization of the simulation results.展开更多
Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The fou...Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The four kinds of singularities of 2-DOF planar seven-bar linkages used in hybrid actuators are analyzed in detail by this method. Its five kinds of singular positions whose characteristics are discussed respectively are discovered. Three approaches are proposed on how to avoid the singular positions of planar multi-loop multi-DOF linkages. Based on the assemblability of planar single-loop N-bar chains or linkages, the geometry conditions are investigated and discovered to avoid the singular positions of the linkages. In order to versify aforementioned conclusions, a case is given in which the singular curves are plotted and simulated.展开更多
This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity a...This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity and Reynolds equation as well. The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam and stationary plate, the pull-in instability happens.展开更多
EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to...EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to predict the thrust acting on TBMs under different geological conditions for both the design of power system and the control of tunneling process. The interaction between the cutterhead and the ground is the core of excavation, through which geological conditions determine the thrust re-quirement combined with operating status and structural characteristics. This paper conducted a mechanical decoupling analysis to obtain a basic expression of the cutterhead-ground interactive stress. Then more engineering factors(such as cutterhead topological structure, underground overburden, thrusts on other parts, etc.) were further considered to establish a predicting model for the total thrust acting on a machine during tunneling. Combined with three subway projects under different geological conditions in China, the model was verified and used to analyze how geological, operating and structural parameters influence the acting thrust.展开更多
Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discre...Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.展开更多
As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation...As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation is usually referenced in the evaluation of pulmonary status and assessment of respiratory therapy. In order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, in this paper, a new mathematical model of mechanical ventilation system was set up. Furthermore, a prototype mechanical ventilation system for an artificial simulating lung was designed and experimentally studied. Lastly, in order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, the air flow dynamics of the mechanical ventilation system was illustrated through simulation and experimental studies. The study can be helpful to the optimization of the mechanical ventilation system.展开更多
A new type of homoclinic arid heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreove...A new type of homoclinic arid heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanicaL feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlineaR evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.展开更多
Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich a...Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.展开更多
文摘In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.
基金Project 104030 supported by the Ministry of Education of the People’s Republic of China
文摘Given the actual working of a fully mechanized plough at a mining face, we have proposed a formula for running constraints between powered supports and a coal plough under assumed geological conditions of the coal face and, on this basis, established an automatic control model of powered supports for the coal plough face. We introduced the working principle of the powered support control system of the plough at the mining face. We established three advanced characteristics of this control system: response speed, reliability and easy maintenance of the system. As well, we briefly introduced, the principal function of primary and subordinate controllers and the realization of the communication system by a Single Bus. Ten controllers were constructed and tested in our laboratorium. The results show that the control model is practical and meets actual conditions. It provides a theoretical basis for designing a comouter control system for a oowered support system of a plough at a mining face.
文摘The simple dynamic model is often adopted to deal with control questions in research on semi-active suspension. The model has more theoretic meanings than authentic ones because of difference between practical and physical models. The virtual prototype has remarkable advantages in its application simulation processes. It is not only faster and more veracious, but also of better visualization of the simulation results.
文摘Based on the Jacobian matrices relating the input speeds with the output speeds of linkages, a general method, which is used for solving the singularities of planar multi-loop multi-DOF linkages, is presented. The four kinds of singularities of 2-DOF planar seven-bar linkages used in hybrid actuators are analyzed in detail by this method. Its five kinds of singular positions whose characteristics are discussed respectively are discovered. Three approaches are proposed on how to avoid the singular positions of planar multi-loop multi-DOF linkages. Based on the assemblability of planar single-loop N-bar chains or linkages, the geometry conditions are investigated and discovered to avoid the singular positions of the linkages. In order to versify aforementioned conclusions, a case is given in which the singular curves are plotted and simulated.
文摘This paper shows an analysis ofMEM S (micro electro mechanical systems) due to Lorentz force and mechanical shock. The formulation is based on a modified couple stress theory, the von Karman geometric nonlinearity and Reynolds equation as well. The model contains a silicon microbeam, which is encircled by a stationary plate. The non-dimensional governing equations and associated boundary conditions are then solved iteratively through the Galerkin weighted method. The results show that pull-in voltage is dependent on the geometry nonlinearity. It is also demonstrated that by increasing voltage between the silicon microbeam and stationary plate, the pull-in instability happens.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11127202 & 11302146)
文摘EPB TBMs(Earth pressure balance Tunneling Boring Machines) are extensively used in tunneling constructions because of its high efficiency and low disturbance on structures above ground. It is critically significant to predict the thrust acting on TBMs under different geological conditions for both the design of power system and the control of tunneling process. The interaction between the cutterhead and the ground is the core of excavation, through which geological conditions determine the thrust re-quirement combined with operating status and structural characteristics. This paper conducted a mechanical decoupling analysis to obtain a basic expression of the cutterhead-ground interactive stress. Then more engineering factors(such as cutterhead topological structure, underground overburden, thrusts on other parts, etc.) were further considered to establish a predicting model for the total thrust acting on a machine during tunneling. Combined with three subway projects under different geological conditions in China, the model was verified and used to analyze how geological, operating and structural parameters influence the acting thrust.
基金supported by the National Natural Science Foundation of China (Grant No: 10902051)the Natural Science Foundation of Jiangsu Province (Grant No: BK2008046)
文摘Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.
基金supported by the National Natural Science Foundation of China(Grant No.51575020)
文摘As an important life support treatment, mechanical ventilation is usually adopted in clinics. With the development of the res-piratory diagnostic and treatment technologies, air flow dynamics of mechanical ventilation is usually referenced in the evaluation of pulmonary status and assessment of respiratory therapy. In order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, in this paper, a new mathematical model of mechanical ventilation system was set up. Furthermore, a prototype mechanical ventilation system for an artificial simulating lung was designed and experimentally studied. Lastly, in order to improve the ventilation efficiency and provide a reference for pulmonary diagnostics, the air flow dynamics of the mechanical ventilation system was illustrated through simulation and experimental studies. The study can be helpful to the optimization of the mechanical ventilation system.
基金Supported by the Natural Science Foundation of China under Grant No.11061028
文摘A new type of homoclinic arid heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanicaL feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlineaR evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions.
基金supported by the National Natural Fundamental Research Program of China(Grant No.2012CB922103)the National Science Foundation of China(Grant Nos.11375067,11275074,11374116,11204096 and 11405061)the Fundamental Research Funds for the Central Universities HUST(Grant No.2014QN193)
文摘Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.