A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature...The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.展开更多
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of t...A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computa- tional Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dim- ensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.展开更多
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.
基金the China Post Doctor National Fund (No.AD4122,2008)
文摘The design of the re-entry space vehicles and high-speed aircraft structures requires special attention to the non-linear thermoelastic and aerodynamic instabilities.The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes.The dynamic behavior of a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom(DOF) operating in supersonic/hypersonic flight speed regimes has been analyzed.In addition a third order piston theory aerodynamics(PTA) is used to evaluate the non-linear unsteady aerodynamic loads applied to the wing section.Loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered.The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams.It is demonstrated that serious losses of torsional stiffness may occur in such lifting surfaces;the influence of various parameters such as flight condition,thickness ratio,freeplays and pitching stiffness nonlinearity are discussed.
文摘A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computa- tional Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dim- ensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.