The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relations...The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relationship between dynamic modal flexibility and modal flexibility, which is used to find out the dangerous model of the transmission system and its weak areas. Then design parameters of weak areas are modified, the new one from the old structure is put forward, and the dynamic characteristics of new ...展开更多
In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe ...In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.展开更多
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod...The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.展开更多
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte...The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.展开更多
The paper concerns a research into dynamic properties of the steel suspension bridge across Opolska Street in Krakow, Poland. Parameter identification was carried out with the application of the nonlinear system ident...The paper concerns a research into dynamic properties of the steel suspension bridge across Opolska Street in Krakow, Poland. Parameter identification was carried out with the application of the nonlinear system identification method on the basis of system responses to exploitational excitation resulting from pedestrian traffic. In order to verify obtained results, on the basis of the geometrical and material properties of the considered system, the FEM (finite elements model) was created. Created FEM model was updated through the comparison with the model determined by the use of experimental modal analysis method and then applied to analytical evaluation of the considered suspension bridge natural frequencies.展开更多
The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experim...The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.展开更多
The structural and dynamic properties of nanoscale ethanol film on a mica surface are investigated via molecular dynamics simulations. We observe a dense, almost fiat ethanol bilayer formed in the vicinity of the mica...The structural and dynamic properties of nanoscale ethanol film on a mica surface are investigated via molecular dynamics simulations. We observe a dense, almost fiat ethanol bilayer formed in the vicinity of the mica surface, with the hydrophobic alkyl groups pointing outward from the surface. Remarkably, such ethanol bilayer is laterally well-ordered with patterned adsorption sites. Each ethanol molecule in the first layer donates one hydrogen bond to the surface basal oxygen atoms and accepts one hydrogen bond from that in the second layer. The ethanol molecules within the bilayer exhibit constrained lateral mobility and delayed dynamics as compared with bulk ethanol, whereas those on top of the bilayer have bulk-like characteristics.展开更多
Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the ...Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the underlying mechanisms of the variation of glass forming ability among the liquid alloys.For the so called similar elements such as Cu and Ni,their behaviors are significantly different when interacting with Pd or P atoms.Cu has weak bonding with both Pd and P while Ni has very strong bonding with P but nearly no bonding with Pd.The different bonding characters thus underlie the phenomenon that in the best glass formers the ratio of the two similar elements often deviates from 1:1.Only if the parameters of chemical short-range order of Cu and Ni around P become closest to each other the best glass forming ability is reached.It is also illustrated that the calculated dynamic properties are very helpful to locate the composition of the best glass former.展开更多
文摘The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relationship between dynamic modal flexibility and modal flexibility, which is used to find out the dangerous model of the transmission system and its weak areas. Then design parameters of weak areas are modified, the new one from the old structure is put forward, and the dynamic characteristics of new ...
文摘In this paper the dynamic characteristics in pipes are analyzed with frequency method, and puts forward a simple and practical describing method. By establishing the model library beforehand, the modeling of the pipe net is completed automatically, and we can accurately calculate the impedance characteristics of the pipe network, achieve the reasonable configuration of the pipe network, so that to decrease the pressure pulsation.
基金Projects(50935002, 11002039) supported by the National Natural Science Foundation of ChinaProject(HIT.KLOF.2009062) supported by Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology,Chinasupport by "111 Project" (Grant No.B07018)
文摘The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.
基金Projects(50708072,51378385)supported by the National Natural Science Foundation of China
文摘The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.
文摘The paper concerns a research into dynamic properties of the steel suspension bridge across Opolska Street in Krakow, Poland. Parameter identification was carried out with the application of the nonlinear system identification method on the basis of system responses to exploitational excitation resulting from pedestrian traffic. In order to verify obtained results, on the basis of the geometrical and material properties of the considered system, the FEM (finite elements model) was created. Created FEM model was updated through the comparison with the model determined by the use of experimental modal analysis method and then applied to analytical evaluation of the considered suspension bridge natural frequencies.
基金supported by the National Natural Science Foundation of China (Grant No. 11072215)the Fundamental Research Funds for the Central Universitiesthe Hong Kong Polytechnic University through the Development of Niche Areas Programme (Grant No. 1-BB95)
文摘The smart magneto-rheological visco-elastomer (MRVE) has a promising application to vibration control.Its dynamic characteristics are described by complex moduli which are applicable to linear dynamics.However,experimental results show remarkable nonlinear relations between force and deformation for certain large deformations,and the nonlinear dynamic modeling needs to be developed.The present study focuses on the nonlinear dynamic characteristics of MRVE.The MRVE was fabricated and specimens were tested to show nonlinear mechanical properties and dynamic behaviors.The nonlinear effect induced by applied magnetic fields was investigated.A phenomenological model for the dynamic behaviors of MRVE was proposed to describe the nonlinear elasticity,linear damping and hysteretic effect,and the corresponding equivalent linear model in the frequency domain was also given for small deformations.The proposed model is applicable to the dynamics and control analysis of composite structures with MRVE.
基金Supported by Grants from Chinese Academy of Sciences,the National Natural Science Foundation of China under Grant No. 10825520National Basic Research Program of China under Grant No. 2007CB936000China Postdoctoral Science Foundation under Grant No. 20100480645
文摘The structural and dynamic properties of nanoscale ethanol film on a mica surface are investigated via molecular dynamics simulations. We observe a dense, almost fiat ethanol bilayer formed in the vicinity of the mica surface, with the hydrophobic alkyl groups pointing outward from the surface. Remarkably, such ethanol bilayer is laterally well-ordered with patterned adsorption sites. Each ethanol molecule in the first layer donates one hydrogen bond to the surface basal oxygen atoms and accepts one hydrogen bond from that in the second layer. The ethanol molecules within the bilayer exhibit constrained lateral mobility and delayed dynamics as compared with bulk ethanol, whereas those on top of the bilayer have bulk-like characteristics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50971082 and 50831003)
文摘Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the underlying mechanisms of the variation of glass forming ability among the liquid alloys.For the so called similar elements such as Cu and Ni,their behaviors are significantly different when interacting with Pd or P atoms.Cu has weak bonding with both Pd and P while Ni has very strong bonding with P but nearly no bonding with Pd.The different bonding characters thus underlie the phenomenon that in the best glass formers the ratio of the two similar elements often deviates from 1:1.Only if the parameters of chemical short-range order of Cu and Ni around P become closest to each other the best glass forming ability is reached.It is also illustrated that the calculated dynamic properties are very helpful to locate the composition of the best glass former.