The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (...The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.展开更多
A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal ...A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.展开更多
In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the bla...In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.展开更多
In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a ...In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.展开更多
A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjec...A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjected to extensive calibration making use of recorded water levels, currents, water temperature and salinity. A high level of accuracy in calibration was achieved as indicated by the computed statistical error parameters at all recording stations. The model results combined with field recording of water levels were used to ascertain tidal wave propagation pattern in the Dubai coastal zone and in and out of the Dubai creek. This model will be a very useful tool in assessing impacts of planned connection of artificial waterways to the Dubai Creek.展开更多
Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there...Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there are signiticant differences between epileptic: EEG and normal EEG in the approximate entropy with the variance of embedding dimension. This conclusion is helpful to analyze the dynamical behavior of difibrent EEGs by entropy.展开更多
For any β 〉 1, let ([0, 1],Tβ) be the beta dynamical system. For a positive function ψ : N → R+ and a real number x0 E [0, 1], we define D(Tβ, ψ, xo) the set of ψ-well approximable points by xo as {x C [...For any β 〉 1, let ([0, 1],Tβ) be the beta dynamical system. For a positive function ψ : N → R+ and a real number x0 E [0, 1], we define D(Tβ, ψ, xo) the set of ψ-well approximable points by xo as {x C [0, 1] : ]Tβ^nx - x0| (ψ(n) for infinitely many n ∈ N}.In this note, by proving a structure lemma that any ball B(x, r) contains a regular cylinder of comparable length with r, we determine the Hausdorff dimension of the set D(Tβ, ψb, x0) completely for any β 〉 1 and any positive function ψ.展开更多
The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simu...The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simulation.The corrugated wall is sinusoidal in the streamwise and spanwise directions.The Reynolds number in terms of bulk velocity and channel half-height is fixed at 2800 and the wave amplitude to wavelength ratio is varied in the rangeα/λ=0.01,0.02,0.04 in the streamwise direction andα/λ=0.01,0.02,0.04 in the spanwise direction.The results show that flow separation bubbles appear and near-wall streamwise vortices are generated with larger population in the upslope region of the bottom wall as wave amplitude increases.Compared with flat wall,the corrugated geometry increases the pressure coefficient and decreases the friction coefficient on the corrugated wall,and consequently increases the total drag coefficient owing to the increase of pressure coefficient,as expected,the heat transfer is higher.The waves in the spanwise direction converge the vortices into the trough along the streamwise direction and push them away from the bottom wall.Finally,thermal performance factor is defined and the effects of wave amplitude on the thermal performance are scrutinized.展开更多
With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric a...With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.展开更多
The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chem...The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chemical processes occuring at burning pulverized coal in the furnace model. Three-dimensional flows, heat and mass transfer, chemical kinetics of the processes, effects of thermal radiation are considered. Obtained results give quantitative information on velocity distributions, temperature and concentration profiles of the components, the amount of combustion products including harmful substances. The numerical model becomes a tool for investigation and design of combustion chambers with high-efficiency and reliable operation of boiler at thermal power plants.展开更多
This work deals with a three-dimensional system, which describes a food web model consisting of a prey, a specialist predator and a top predator which is generalist as it consumes the other two species. Using tools of...This work deals with a three-dimensional system, which describes a food web model consisting of a prey, a specialist predator and a top predator which is generalist as it consumes the other two species. Using tools of dynamical systems we prove that the trajectories of system are bounded and that open subsets of parameters exist, such that the system in the first octant has at most two singularities. For an open subset of the parameters space, the system is shown to have an invariant compact set and this is a topologically transitive attractor set. Finally, we find another open set in the parameters space, such that the system has two limit cycles each contained in different invariant planes. The work is completed with a numeric simulation showing the attractor is a strange attractor.展开更多
The Etching model on various fractal substrates embedded in two dimensions was investigated by means of kinetic Mento Carlo method in order to determine the relationship between dynamic scaling exponents and fractal p...The Etching model on various fractal substrates embedded in two dimensions was investigated by means of kinetic Mento Carlo method in order to determine the relationship between dynamic scaling exponents and fractal parameters. The fractal dimensions are from 1.465 to 1.893, and the random walk exponents are from 2.101 to 2.578.It is found that the dynamic behaviors on fractal lattices are more complex than those on integer dimensions. The roughness exponent increases with the increasing of the random walk exponent on the fractal substrates but shows a non-monotonic relation with respect to the fractal dimension. No monotonic change is observed in the growth exponent.展开更多
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible...This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.展开更多
In this paper, it is proved that the correlation dimension estimate of a nonlinear dynamical system with its multivariate observation series is the same as that with its univariate observation series. Based on this re...In this paper, it is proved that the correlation dimension estimate of a nonlinear dynamical system with its multivariate observation series is the same as that with its univariate observation series. Based on this result, an inference method is presented, and the Nonlinear Dependence Coefficient is defined. This method is designed for testing nonlinear dependence between time series, and can be used in economic analysis and forecasting. Numerical results show the method is effective.展开更多
文摘The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.
基金Supported by the National Natural Science Foundation of China(91541202,51276163)
文摘A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.
基金financially supported by National "863" Program (Grant No.2007AA05Z450, No. 200805040)National S&T Program (No.2008BAA15B04)+2 种基金2010 National Ocean Special Funds(No.ZJME2010GC01, No. ZJME2010CY01, No.GHME2010GC02)supported by the Fundamental Research Funds of the Universities(No.HEUCF130105)supported by "111 project" foundation(No. B07019) from State Administration of Foreign Experts Affairs of China and Ministry of Education of China
文摘In this paper, hydrodynamic analysis of vertical axis tidal turbine (both fixed pitch & variable pitch) is numerically analyzed. Two-dimensional numerical modeling & simulation of the unsteady flow through the blades of the turbine is performed using ANSYS CFX, hereafter CFX, which is based on a Reynolds-Averaged Navier-Stokes (RANS) model. A transient simulation is done for fixed pitch and variable pitch vertical axis tidal turbine using a Shear Stress Transport turbulence (SST) scheme. Main hydrodynamic parameters like torque T, combined moment CM, coefficients of performance Cp and coefficient of torque Cr, etc. are investigated. The modeling and meshing of turbine rotor is performed in ICEM-CFD. Moreover, the difference in meshing schemes between fixed pitch and variable pitch is also mentioned. Mesh motion option is employed for variable pitch turbine. This article is one part of the ongoing research on tm'bine design and developments. The numerical simulation results are validated with well reputed analytical results performed by Edinburgh Design Ltd. The article concludes with a parametric study of turbine performance, comparison between fixed and variable pitch operation for a four-bladed turbine. It is found that for variable pitch we get maximum Ce and peak power at smaller revolution per minute N and tip sped ratio 2.
文摘In this paper the flow through a control directional valve is studied by means of a CFD (computational fluid-dynamics) analysis under transient operating conditions. The mesh motion is resolved on a time basis as a function of the external actuation system In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. Moreover, the numerical model of the working fluid is modified in order to account also for the non-Newtonian fluids. The effects of the shear rate on the shear stress are accounted for both by using experimental measurements and correlations available in literature, such as the Herschel-Bulkley model. The analysis determines the performance of the control directional valve under different operating conditions when using either Newtonian or non-Newtonian fluids. In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated.
文摘A three dimensional hydrodynamic was developed for the Dubai coastal zone including the Dubai Creek. The model is based on DHI (Danish Hydraulic Institute's) MIKE 3 HD (FM) modeling software. The model was subjected to extensive calibration making use of recorded water levels, currents, water temperature and salinity. A high level of accuracy in calibration was achieved as indicated by the computed statistical error parameters at all recording stations. The model results combined with field recording of water levels were used to ascertain tidal wave propagation pattern in the Dubai coastal zone and in and out of the Dubai creek. This model will be a very useful tool in assessing impacts of planned connection of artificial waterways to the Dubai Creek.
基金Natural Science Foundation of Fujian Province of China grant number: 2010J01210 and T0750008
文摘Based on the time-delayed embedding method of phase space reconstruction, a new method to compute the approximate entropy (ApEn) of electroencephalogram (EEG) is proposed. The computational results show that there are signiticant differences between epileptic: EEG and normal EEG in the approximate entropy with the variance of embedding dimension. This conclusion is helpful to analyze the dynamical behavior of difibrent EEGs by entropy.
基金supported by National Natural Science Foundation of China(Grant Nos.10901066 and 51149008)Hunan Natural Science Foundation(Grant No.09JJ3001)
文摘For any β 〉 1, let ([0, 1],Tβ) be the beta dynamical system. For a positive function ψ : N → R+ and a real number x0 E [0, 1], we define D(Tβ, ψ, xo) the set of ψ-well approximable points by xo as {x C [0, 1] : ]Tβ^nx - x0| (ψ(n) for infinitely many n ∈ N}.In this note, by proving a structure lemma that any ball B(x, r) contains a regular cylinder of comparable length with r, we determine the Hausdorff dimension of the set D(Tβ, ψb, x0) completely for any β 〉 1 and any positive function ψ.
基金supported by the National Natural Science Foundation of China(Grant No.50476063)
文摘The present study numerically investigates the characteristics of three-dimensional turbulent flow and heat transfer in the channel with one corrugated wall heated with constant temperature by means of large eddy simulation.The corrugated wall is sinusoidal in the streamwise and spanwise directions.The Reynolds number in terms of bulk velocity and channel half-height is fixed at 2800 and the wave amplitude to wavelength ratio is varied in the rangeα/λ=0.01,0.02,0.04 in the streamwise direction andα/λ=0.01,0.02,0.04 in the spanwise direction.The results show that flow separation bubbles appear and near-wall streamwise vortices are generated with larger population in the upslope region of the bottom wall as wave amplitude increases.Compared with flat wall,the corrugated geometry increases the pressure coefficient and decreases the friction coefficient on the corrugated wall,and consequently increases the total drag coefficient owing to the increase of pressure coefficient,as expected,the heat transfer is higher.The waves in the spanwise direction converge the vortices into the trough along the streamwise direction and push them away from the bottom wall.Finally,thermal performance factor is defined and the effects of wave amplitude on the thermal performance are scrutinized.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB711100)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No.2009BAQG12A03)Computing Facility for Computational Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.
基金funded by the Ministry of Education and Science of Kazakhstan Republic,№0112РК01095support from the Technology Agency of the Czech Republic in the frame of the Competence Centre Advanced Technology of Heat and Electricity Output,No.TE01020036
文摘The paper deals with development and application the numerical model for solution of processes at combustion chamber of the thermal power plant boiler. Mathematical simulation is based on solution of physical and chemical processes occuring at burning pulverized coal in the furnace model. Three-dimensional flows, heat and mass transfer, chemical kinetics of the processes, effects of thermal radiation are considered. Obtained results give quantitative information on velocity distributions, temperature and concentration profiles of the components, the amount of combustion products including harmful substances. The numerical model becomes a tool for investigation and design of combustion chambers with high-efficiency and reliable operation of boiler at thermal power plants.
文摘This work deals with a three-dimensional system, which describes a food web model consisting of a prey, a specialist predator and a top predator which is generalist as it consumes the other two species. Using tools of dynamical systems we prove that the trajectories of system are bounded and that open subsets of parameters exist, such that the system in the first octant has at most two singularities. For an open subset of the parameters space, the system is shown to have an invariant compact set and this is a topologically transitive attractor set. Finally, we find another open set in the parameters space, such that the system has two limit cycles each contained in different invariant planes. The work is completed with a numeric simulation showing the attractor is a strange attractor.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2015XKMS074-CUMT
文摘The Etching model on various fractal substrates embedded in two dimensions was investigated by means of kinetic Mento Carlo method in order to determine the relationship between dynamic scaling exponents and fractal parameters. The fractal dimensions are from 1.465 to 1.893, and the random walk exponents are from 2.101 to 2.578.It is found that the dynamic behaviors on fractal lattices are more complex than those on integer dimensions. The roughness exponent increases with the increasing of the random walk exponent on the fractal substrates but shows a non-monotonic relation with respect to the fractal dimension. No monotonic change is observed in the growth exponent.
基金supported by the National Natural Science Foundation of China(No.11171223)the Doctoral Program Foundation of Ministry of Education of China(No.20133127110007)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.
文摘In this paper, it is proved that the correlation dimension estimate of a nonlinear dynamical system with its multivariate observation series is the same as that with its univariate observation series. Based on this result, an inference method is presented, and the Nonlinear Dependence Coefficient is defined. This method is designed for testing nonlinear dependence between time series, and can be used in economic analysis and forecasting. Numerical results show the method is effective.