A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to b...A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.展开更多
Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabil...Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabilistic cellular automata-Markov Chain model was developed and used to simulate a land cover scenario of China for the year 2014. Spatiotemporal dynamics of land use/cover in China from 1982 to 2014 were then analyzed and evaluated. The results showed that the change trends of land cover type from 1998 to 2014 would be contrary to those from 1982 to 1998. In particular, forestland and grassland areas decreased by 1.56% and 1.46%, respectively, from 1982 to 1998, and should increase by 1.5% and 2.3% from 1998 to 2014, respectively.展开更多
基金financially supported by the Singapore Economic Development Board(EDB)through the Minerals Metals and Materials Technology Centre(M3TC)Research Grant R-261-501-013-414
文摘A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.
基金Supported by the National Natural Science Foundation of China(No.30730021)the Applied Basic Research Programs of Yunnan Province,China(Nos.2011FZ140 and 2010CD047)
文摘Using the fuzzy rule-based classification method, normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases. Based on these classification images, a probabilistic cellular automata-Markov Chain model was developed and used to simulate a land cover scenario of China for the year 2014. Spatiotemporal dynamics of land use/cover in China from 1982 to 2014 were then analyzed and evaluated. The results showed that the change trends of land cover type from 1998 to 2014 would be contrary to those from 1982 to 1998. In particular, forestland and grassland areas decreased by 1.56% and 1.46%, respectively, from 1982 to 1998, and should increase by 1.5% and 2.3% from 1998 to 2014, respectively.