The matrix expression for the 3 D transient dynamic boundary integral equation in Laplace transform space is obtained and the degenerative element method has been implemented to treat the kernel function over the sin...The matrix expression for the 3 D transient dynamic boundary integral equation in Laplace transform space is obtained and the degenerative element method has been implemented to treat the kernel function over the singular element. In the computer program BEMTDY the Koizumi′s numerical inversion method is used and three examples of the 3 D vibrated foundation under harmonic forces and the influence with both adjacent foundations are studied.展开更多
Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated so...Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated soil are obtained using integral transform methods.The Cauchy type singularity of the boundary integral equation is discussed.The effectiveness of the properties of soil mass and incident field on the dynamic stress concentration and pore pressure concentration around a cavity is analyzed.Our results are in good agreement with the existing solution.The numerical results of this work show that the dynamic stress concentration and pore pressure concentration are influenced by the degree of fluid–solid coupling as well as the pore compressibility and water permeability of saturated soil.With increased degree of fluid–solid coupling,the dynamic stress concentration improves from 1.87 to 3.42 and the scattering becomes more significant.With decreased index of soil mass compressibility,the dynamic stress concentration increases and its maximum reaches 3.67.The dynamic stress concentration increases from 1.64 to 3.49 and pore pressure concentration improves from 0.18 to 0.46 with decreased water permeability of saturated soil.展开更多
Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimen...Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimensional CFD to the efficient but not perfect boundary element models. Focus on the boundary element methods, analysis methods for the interaction of waves and structures are discussed. Those boundary element models cover frequency domain and time domain, linear and non-linear. Special attention is pay to the problems encountered in those models and approaches we adopted for their engineering solution.展开更多
文摘The matrix expression for the 3 D transient dynamic boundary integral equation in Laplace transform space is obtained and the degenerative element method has been implemented to treat the kernel function over the singular element. In the computer program BEMTDY the Koizumi′s numerical inversion method is used and three examples of the 3 D vibrated foundation under harmonic forces and the influence with both adjacent foundations are studied.
基金Projects(50969007,51269021) supported by the National Natural Science Foundation of ChinaProjects(20114BAB206012,20133ACB20006) supported by the Natural Science Foundation of Jiangxi Province of China
文摘Based on Biot’s theory and considering the properties of a cavity,the boundary integral equations for the numerical simulation of wave scattering around a cavity with a circular cross-section embedded in saturated soil are obtained using integral transform methods.The Cauchy type singularity of the boundary integral equation is discussed.The effectiveness of the properties of soil mass and incident field on the dynamic stress concentration and pore pressure concentration around a cavity is analyzed.Our results are in good agreement with the existing solution.The numerical results of this work show that the dynamic stress concentration and pore pressure concentration are influenced by the degree of fluid–solid coupling as well as the pore compressibility and water permeability of saturated soil.With increased degree of fluid–solid coupling,the dynamic stress concentration improves from 1.87 to 3.42 and the scattering becomes more significant.With decreased index of soil mass compressibility,the dynamic stress concentration increases and its maximum reaches 3.67.The dynamic stress concentration increases from 1.64 to 3.49 and pore pressure concentration improves from 0.18 to 0.46 with decreased water permeability of saturated soil.
文摘Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimensional CFD to the efficient but not perfect boundary element models. Focus on the boundary element methods, analysis methods for the interaction of waves and structures are discussed. Those boundary element models cover frequency domain and time domain, linear and non-linear. Special attention is pay to the problems encountered in those models and approaches we adopted for their engineering solution.