Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed wer...Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.展开更多
Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can ...Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.展开更多
Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773...Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773 K for 6 h. Removal of vanadate anion ( 3-4VO ) from aqueous solution on CLDH2 was studied. Batch studies were carried out to address various experimental parameters such as Mg/Al molar ratio, adsorbent dosage, initial concentration of solution, contact time and temperature. Vanadate was removed effectively at the optimized experimental conditions. The adsorption kinetics data fitted the pseudo-first-order model. Isotherms for adsorption vanadate by CLDH2 at different solution temperatures were well described using the Langmuir and Freundlich equations, and the isotherm parameters were calculated using linear regression analysis. The adsorption data fitted the langmuir model with good values of the correlation coefficient (R2〉0.999). The negative value ofΔGΘand the positive value ofΔHΘindicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption suggests that the surface adsorption is the main process.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod...The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.展开更多
A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm....A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.展开更多
Adsorption and desorption behavior of Yb (III) by SQD-85 resin was investigated by various chemical methods and IR spectrometry. The adsorption capacity of SQD-85 resin for Yb (III) was studied as a function of so...Adsorption and desorption behavior of Yb (III) by SQD-85 resin was investigated by various chemical methods and IR spectrometry. The adsorption capacity of SQD-85 resin for Yb (III) was studied as a function of solution pH, initial concentration of Yb(III), temperature and contact time. The optimal pH for the adsorption was 5.50 in the HAc-NaAc system, and the maximum adsorption capacity was estimated to be 347.6 mg/g at 308 K. The isotherms adsorption data fit well with Langmuir model. The adsorption kinetics data are in agreement with pseudo-second-order model. Thermodynamic parameters indicate that Yb (III) adsorption by SQD-85 resin is endothermic and spontaneous in nature. Thomas model is reasonably accurate in predicting experimental column results. The dynamic desorption rate of Yb(III) can increase to 97.3% when the elution agent is 1.0 mol/L HCl. These results suggest that Yb(III) in aqueous solution can be removed and recovered by SQD-85 resin efficiently.展开更多
The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experime...The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experiments were conducted using aqueous copper sulfate solutions containing either single or conjoint ions,using both sedentary and batch adsorption techniques to ascertain the sensitivity of the adsorption process to variation in p H,mass of resin,contact time,and temperature as well as establishing the optimal range of variables for maximum ion removal.The data from single ion adsorption tests were fitted by non-linear regression techniques to Henry,Langmuir,Freundlich,Temkin,and Dubinin–Radushkevich isotherm models.Freundlich isotherm for Sb(Ⅲ)and Freundlich and Henry models for Fe(Ⅱ)solutions best express the adsorption equilibrium data;while for binary ion electrolytes,the extended Freundlich model fitted the data satisfactorily.The kinetic model adequately describing adsorption was shown to be the pseudo-first-order,underscoring the dominant role of physical adsorption playing in the process.Thermodynamic parameters for the adsorption process reveal differences in the Sb(Ⅲ)adsorption mechanism from single ion and Sb(Ⅲ)-Fe(Ⅱ)containing electrolytes.The adsorption of Sb(Ⅲ)alone is endothermic,whereas the process becomes exothermic in the Sb(Ⅲ)-Fe(Ⅱ)system.展开更多
Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing mala...Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.展开更多
The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the m...The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.展开更多
Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency ...Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency of Mg,Fe,Al,Ni,and Co reaches 93.98%,60.09%,82.08%,90.58%,and 94.06%,respectively,under the leaching conditions of 5 mol/L H_(2)SO_(4),liquid/solid ratio of 4 mL/g,and leaching temperature 100℃.Hence,the valuable metals in serpentine were effectively recovered by sulfuric acid leaching.The leaching behaviors of Mg,Fe,and a small amount of Al were analyzed using X-ray diffraction.The results show that the unreacted Mg and Fe remained as MgFe_(2)O_(4),and Al formed Al_(2)Si_(2)O_(5)(OH)_(4) in the leaching residue.The kinetics of Mg and Ni in the leaching process was studied respectively.The leaching kinetics of Mg conformed to the shrinking core model with an activation energy of 16.95 kJ/mol,which was controlled by the combination of the diffusion and chemical reaction.The leaching kinetics of Ni accorded with the Avrami equation with an activation energy of 11.57 kJ/mol,which was controlled by diffusion.In the study,the valuable metal elements were extracted from serpentine minerals with high efficiency and low cost,which possessed important practical values.展开更多
The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimenta...The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).展开更多
Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance ...Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the long- time limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.展开更多
Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process...Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process, experiments were conducted to estimate the crystallization thermodynamics and kinetics, and then the process was simulated by a numerical method. The application of Monte Carlo concept in the algorithm to describe agglomeration event offers an alternative approach of solving the population balance, the intrinsic simplicity of which allows us to investigate several mechanisms and include several internal coordinates in the analysis. Furthermore, present study may be a valuable paradigm for other semi-batch crystallization processes.展开更多
Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological charac...Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals展开更多
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo...Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.展开更多
The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbo...The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.展开更多
Based on that the poly(acrylonitrile-co-maleic acid) (PANCMA)/DMSO/nonsolvent system agreed with the empirical linearized cloud point (LCP) relation, thermodynamics and kinetics of liquid-liquid phase separation...Based on that the poly(acrylonitrile-co-maleic acid) (PANCMA)/DMSO/nonsolvent system agreed with the empirical linearized cloud point (LCP) relation, thermodynamics and kinetics of liquid-liquid phase separation behavior of this system were investigated through coagulation value and phase diagram. It was found that adding solvent to the coagulation bath decreased the coagulation power and diffusion exchange rate of solvent and nonsolvent, and the system became more stable thermodynamically. On the other hand, the system with poly(vinyl alcohol) (PVA) as additive was thermodynamically less stable than that with poly (vinylpyrrolidone) (PVP) and/or not. In addition, the polymer solution system at higher temperature became thermodynamically more stable and had a higher nonsolvent tolerance. Moreover, higher temperature heightened the diffusion exchange rate of solvent and nonsolvent and accelerated phase separation. It is indicated that phase diagram and coagulation value offered some useful and necessary thermodynamic and kinetic information to establish optimal conditions and guide practical membrane fabrication in the results.展开更多
The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of co...The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.展开更多
基金Projects(51374064,51004033,51074044)supported by the National Natural Science Foundation of ChinaProject(2012AA062303)supported by High-tech Research and Development Program of China
文摘Natural rutile and gaseous chlorine with carbon as reductant were used to prepare titanium tetrachloride. Thermodynamics and kinetics of chlorination of Kenya natural rutile particles in a batch-type fluidized bed were studied at 1173-1273 K. Thermodynamic analysis of this system revealed that the equation of producing CO was dominant at high temperatures. Based on the gas-solid multi-phase reaction theory and a two-phase model for the fluidized bed, the mathematical description for the chlorination reaction of rutile was proposed. The reaction parameters and the average concentration of gaseous chlorine in the emulsion phase were estimated. The average concentration of emulsion phase in the range of fluidized bed was calculated as 0.3 mol/m^3. The results showed that the chlorination of natural rutile proceeded principally in the emulsion phase, and the reaction rate was mainly controlled by the surface reaction.
基金Project (20130206059G X) supported by Science and Technology Key Project of Jilin Province,ChinaProject (20101553) supported by the Natural Science Foundation of Jilin Province,China+1 种基金Project (BSJXM-201226) supported by Doctor Science Research Starting Projects of Northeast Dianli University,ChinaProject (2013) supported by the 12th Five-Year Enhancing Innovation Projects of Northeast Dianli University,China
文摘Amino-bacterial cellulose(amino-BC) was prepared by chemical modification of bacterial cellulose(BC).The adsorption characteristics and mechanism of amino-BC were studied.The results show that adsorption data can be fitted well by Langmuir equation and the pseudo-second order kinetics,indicating that the adsorption of amino-BC would obey monolayer molecule adsorption and the main action was chemisorption.Meanwhile,the adsorption process was studied by the Elovich equation and the intra-particle diffusion model,indicating that the absorption characteristics of metal ions on amino-BC is controlled by both film diffusion and particle diffusion.The increase of reaction temperature will accelerate the adsorbing rate because of endothermic reaction.
基金Projects(21176263,21175155)supported by the National Natural Science Foundation of China
文摘Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773 K for 6 h. Removal of vanadate anion ( 3-4VO ) from aqueous solution on CLDH2 was studied. Batch studies were carried out to address various experimental parameters such as Mg/Al molar ratio, adsorbent dosage, initial concentration of solution, contact time and temperature. Vanadate was removed effectively at the optimized experimental conditions. The adsorption kinetics data fitted the pseudo-first-order model. Isotherms for adsorption vanadate by CLDH2 at different solution temperatures were well described using the Langmuir and Freundlich equations, and the isotherm parameters were calculated using linear regression analysis. The adsorption data fitted the langmuir model with good values of the correlation coefficient (R2〉0.999). The negative value ofΔGΘand the positive value ofΔHΘindicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption suggests that the surface adsorption is the main process.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金financial supports from the Inner Mongolia Natural Science Foundation,China (No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund,China (No.2019QDL-B11)the National Natural Science Foundation of China (Nos.51901105, 51871125, 51761032).
文摘The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.
基金Supported by the Shanxi Science and Technology Agency Research Project(20100321085)the Scientific Research Foun-dation of the Shanxi Education Department(20111029)
文摘A low-cost adsorbent was prepared from sludge and straw by pyrolysis in a dried state with the surface area of the adsorbent of 829.49 ma. g-l, micropore volume of 0.176 cm2·g-1 and average pore radius of 5.0 nm. The kinetic, equilibrium isotherm and thermodynamic characteristics of trisodium 1-(1-naphthylazo)-2-hydroxynaphthalene- 4',6,8-trisulphonate (acid scarlet 3R) onto the adsorbent from sludge and straw were investigated. The results indicated that the pseudo second order adsorption was the predominant adsorption mechanism of acid scarlet 3R. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data were fitted better with Langmuir model than Freundlich model, indicating that the adsorption of acid scarlet 3R belonged to the monolayer adsorption and mainly occurred in micropores.
基金Project (2011007) supported by Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-tech University, ChinaProject (2010C32085) supported by Science and Technology Department of Zhejiang Province, China
文摘Adsorption and desorption behavior of Yb (III) by SQD-85 resin was investigated by various chemical methods and IR spectrometry. The adsorption capacity of SQD-85 resin for Yb (III) was studied as a function of solution pH, initial concentration of Yb(III), temperature and contact time. The optimal pH for the adsorption was 5.50 in the HAc-NaAc system, and the maximum adsorption capacity was estimated to be 347.6 mg/g at 308 K. The isotherms adsorption data fit well with Langmuir model. The adsorption kinetics data are in agreement with pseudo-second-order model. Thermodynamic parameters indicate that Yb (III) adsorption by SQD-85 resin is endothermic and spontaneous in nature. Thomas model is reasonably accurate in predicting experimental column results. The dynamic desorption rate of Yb(III) can increase to 97.3% when the elution agent is 1.0 mol/L HCl. These results suggest that Yb(III) in aqueous solution can be removed and recovered by SQD-85 resin efficiently.
文摘The present study dealt with the mechanism of competitive adsorption of Sb(Ⅲ)and Fe(Ⅱ)ions from a copper-containing aqueous solution on Purolite S957,a commercially available cationic ion-exchange adsorbent.Experiments were conducted using aqueous copper sulfate solutions containing either single or conjoint ions,using both sedentary and batch adsorption techniques to ascertain the sensitivity of the adsorption process to variation in p H,mass of resin,contact time,and temperature as well as establishing the optimal range of variables for maximum ion removal.The data from single ion adsorption tests were fitted by non-linear regression techniques to Henry,Langmuir,Freundlich,Temkin,and Dubinin–Radushkevich isotherm models.Freundlich isotherm for Sb(Ⅲ)and Freundlich and Henry models for Fe(Ⅱ)solutions best express the adsorption equilibrium data;while for binary ion electrolytes,the extended Freundlich model fitted the data satisfactorily.The kinetic model adequately describing adsorption was shown to be the pseudo-first-order,underscoring the dominant role of physical adsorption playing in the process.Thermodynamic parameters for the adsorption process reveal differences in the Sb(Ⅲ)adsorption mechanism from single ion and Sb(Ⅲ)-Fe(Ⅱ)containing electrolytes.The adsorption of Sb(Ⅲ)alone is endothermic,whereas the process becomes exothermic in the Sb(Ⅲ)-Fe(Ⅱ)system.
基金Projects(U1802254,51871201)supported by the National Natural Science Foundation of ChinaProject(LY18E040003)supported by the Zhejiang Provincial Natural Science Foundation,China
文摘Three-dimensional ordered macro/mesoporous carbon(3DOM/m-C)with high specific surface area was synthesized by colloid crystal template method with chemical activation by KOH and used as the adsorbent for removing malachite green(MG)in aqueous solution.The microstructures of the adsorbents were characterized by FESEM,TEM and BET,and the effects of initial dye concentration,contact time,solution pH,and temperature on adsorption performance were investigated.The results show that the 3DOM/m-C exhibits extremely high adsorption capacity of 3541.1 mg/g within 2 h,which could be attributed to the novel ordered hierarchical structure with mesopores on three-dimensional ordered macroporous carbon walls.And the adsorption behavior conforms to the pseudo-second-order kinetic and Langmuir adsorption isotherm.3DOM/m-C can be recycled after being desorbed by absolute ethanol,and still maintains a high capacity of 2762.06 mg/g after 5 cycles.
基金Supported by the National Natural Science Foundation of China (No.40172047) and National Major Fundamental Research & Development Project(No.G19990433)
文摘The destruction of hydrocarbon in deep carbonate diagenetic environment is one of problems on the formation of oil and gas. Organic-inorganic reactions in the process of TSR(Thermochemical Sulfate Reduction) are the main reason to make disappearance of the hydrocarbons. The work in this field has often been the subject of much research work in recent years. In this paper, the thermodynamics of CH4-CaSO4 and H2S-Fe2O3 systems is discussed to investigate the possibility of reactions. It is found that these two reactions can proceed spontaneously.Increasing temperature is favorite for CH4-CaSO4 system but disfavorite for H2S-Fe2O3 system. Thermal simulation experiments were carried out using autoclave at high temperature and high pressure. The properties of the products were characterized by microcoulometry, FT-IR and XRD methods. On the basis of the experimental data, a reaction kinetic model is developed and kinetic parameters are determined.
基金Project(51574286)supported by the National Natural Science Foundation of China。
文摘Inner Mongolian serpentine ore was subjected to sulfuric acid leaching tests,and the effects of the leaching process parameters on the leaching efficiency of different metals were investigated.The leaching efficiency of Mg,Fe,Al,Ni,and Co reaches 93.98%,60.09%,82.08%,90.58%,and 94.06%,respectively,under the leaching conditions of 5 mol/L H_(2)SO_(4),liquid/solid ratio of 4 mL/g,and leaching temperature 100℃.Hence,the valuable metals in serpentine were effectively recovered by sulfuric acid leaching.The leaching behaviors of Mg,Fe,and a small amount of Al were analyzed using X-ray diffraction.The results show that the unreacted Mg and Fe remained as MgFe_(2)O_(4),and Al formed Al_(2)Si_(2)O_(5)(OH)_(4) in the leaching residue.The kinetics of Mg and Ni in the leaching process was studied respectively.The leaching kinetics of Mg conformed to the shrinking core model with an activation energy of 16.95 kJ/mol,which was controlled by the combination of the diffusion and chemical reaction.The leaching kinetics of Ni accorded with the Avrami equation with an activation energy of 11.57 kJ/mol,which was controlled by diffusion.In the study,the valuable metal elements were extracted from serpentine minerals with high efficiency and low cost,which possessed important practical values.
基金Projects(51761032,51471054) supported by the National Natural Science Foundation of China
文摘The microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95-xNix (x=5, 10, 15) ternary alloys with different Ni contents were investigated. The evolutions of the microstructure and phase of experimental alloys were characterized by X-ray diffractometry and scanning electron microscopy. The hydrogen storage kinetics and thermodynamics, and P-C-I curves were tested using a Sievert apparatus. It is found that increasing Ni content remarkably improves hydrogen storage kinetics but reduces the hydrogen storage capacity of alloys. The highest hydrogen absorption/desorption rate is observed in the La5Mg80Ni15 alloy, with the lowest hydrogen desorption activation value being 57.7 kJ/mol. By means of P-C-I curves and the van’t Hoff equation, it is determined that the thermodynamic performance of the alloy is initially improved and then degraded with increasing Ni content. The La5Mg85Ni10 alloy has the best thermodynamics properties with a hydrogenation enthalpy of -72.1 kJ/mol and hydrogenation entropy of -123.2 J/(mol·K).
文摘Symmetrical quasi-classical (SQC) method based on mapping Hamiltonian is an efficient approach that is potentially useful to treat the nonadiabatic dynamics of very large systems. We try to evaluate the performance of this method in the ultrafast electron transfer processes involving a few of electronic states and a large number of vibrational modes. The multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method was used to get the accurate dynamical results for benchmark. Although the population dynamics in the long- time limit show differences in the ML-MCTDH and SQC calculations, the SQC method gives acceptable results.
文摘Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process, experiments were conducted to estimate the crystallization thermodynamics and kinetics, and then the process was simulated by a numerical method. The application of Monte Carlo concept in the algorithm to describe agglomeration event offers an alternative approach of solving the population balance, the intrinsic simplicity of which allows us to investigate several mechanisms and include several internal coordinates in the analysis. Furthermore, present study may be a valuable paradigm for other semi-batch crystallization processes.
基金Supported by Science Foundations of Laboratory of Computational Physics and China Academy of Engineering Physics under Grant Nos.2009A0102005 and 2009B0101012National Science Foundation of China under Grant Nos.10702010,10775018,and 10604010
文摘Strong shock may induce complex processes in porous materials. We use the newly developed materialpoint-method to simulate such processes in an HMX-like material. To pick out relevant information, morphological characterization is used to treat with the temperature map. Via the Minkowski funetional analysis the dynamics and thermodynamics of the shock wave reaction on porous HMX-like material are studied. The geometrical and topological properties of the "hot-spots" are revealed. Numerical results indicate that, shocks in porous materials are not simple jump states as classically viewed, but rather are a complex sequence of compressions and rarefactions. They cover a broad spectrum of states. We can use coarse-grained description to the wave series. A threshold value of temperature presents a Turing pattern dynamical procedure. A higher porosity is generally preferred when the energetic material needs a higher temperature for initiation. The technique of data analysis can be used to other physical quantities, for example, density, particle velocity, some specific stress, etc. From a series of studies along the line, one may get a large quantity of information for desiring the fabrication of material and choosing shock strength according to what needed is scattered or connected "hot-spots". PACS numbers: 05.70.Ln, 05 Key words: porous material 70.-a, 05.40.-a, 62.50.Ef shock wave, Minkowski functionals
基金Project(50803008)supported by the National Natural Science Foundation of ChinaProjects(14JJ4035,2011RS4067)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2013-sdllmd-08)supported by the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),ChinaProjects(20100480946,201104508)supported by the China Postdoctoral Science Foundation,China
文摘Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
基金the Fundamental Research Funds for the Central Universities of China(No.N2101023).
文摘The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.
基金Acknowledgements: The financial supports of the National Research Fund of Fundamental Key Projects (2007CB936403) and the National Natural Science Foundation of China (20571077) are gratefully acknowledged.
文摘Based on that the poly(acrylonitrile-co-maleic acid) (PANCMA)/DMSO/nonsolvent system agreed with the empirical linearized cloud point (LCP) relation, thermodynamics and kinetics of liquid-liquid phase separation behavior of this system were investigated through coagulation value and phase diagram. It was found that adding solvent to the coagulation bath decreased the coagulation power and diffusion exchange rate of solvent and nonsolvent, and the system became more stable thermodynamically. On the other hand, the system with poly(vinyl alcohol) (PVA) as additive was thermodynamically less stable than that with poly (vinylpyrrolidone) (PVP) and/or not. In addition, the polymer solution system at higher temperature became thermodynamically more stable and had a higher nonsolvent tolerance. Moreover, higher temperature heightened the diffusion exchange rate of solvent and nonsolvent and accelerated phase separation. It is indicated that phase diagram and coagulation value offered some useful and necessary thermodynamic and kinetic information to establish optimal conditions and guide practical membrane fabrication in the results.
基金Projects(51174094, 51101059) supported by the National Natural Science Foundation of China
文摘The glass formation was intensively studied for Fe-based alloys. Parameters defining kinetics and thermodynamic behavior of crystallization were calculated using calorimetric measurements and physical properties of constituent elements. It is found that the critical cooling rate Rc estimated by combining kinetic and thermodynamic parameters highly correlates with measured Rc found in literatures with correlation coefficient R2=0.944, and alloy compositions with high melting enthalpy AHm can easily form glass even without high undercooling and high value of the ,β-parameter of Tumbull's theory, revealing that the glass formation in this group of alloys is mostly controlled by growth limitation. This combination of kinetic and thermodynamic parameters can be used to determine alloy composition with good glass forming ability in Fe-based alloys just using physical properties of alloying elements and calorimetric measurements.