Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate ...Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate grazing rates and grazing pressure. The results showed that Polymenophorea Oligotrichida was the dominant group with 16 species, and there were 4 species in Oligotrichina and 11 species in Tintinnina. The ciliates abundance ranged from 9 to 102 ind/m^3, instantaneous growth rates of phytoplankton (k) varied from 0.03 / d to 2.13 / d. Grazing rates of microzooplankton(g) ranged between 0.01 / d and 1.06 / d. The grazing pressure on initial phytoplankton stock (Pi) and primary production (Pp) was 0.089 % - 65.23 % and 33.63 % - 86.04 %, respectively. The grazing of microzooplankton was mainly limited by ciliates abundance. Results of grazing pressure on primary production indicated that microzooplankton played an improtant role in transmitting primary production in the north of South China Sea.展开更多
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec...The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.展开更多
A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-c...A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.展开更多
According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the def...According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.展开更多
Objective: To establish a model for pregnancy-induced hypertension syndrome in rats. Methods: Adult female Wistar rats were randomized into non-pregnant control (NN), non-pregnant cold-stress control (NC), pregnant co...Objective: To establish a model for pregnancy-induced hypertension syndrome in rats. Methods: Adult female Wistar rats were randomized into non-pregnant control (NN), non-pregnant cold-stress control (NC), pregnant control (PN) and pregnant cold-stress (PC) groups. The rats of NN and PN groups were put under 25 ℃ and those of NC and PC groups under (4±2)℃ for 4 h every morning respectively in the whole experimental period. The blood pressure, urine protein, body weight, haematocrit, weight of the placenta and weight and length of the fetus were recorded and the histological changes of the placenta and the kidneys were also studied. Results: The blood pressure and urine protein of the rats of the NC and PC groups after 2 weeks of cold-stress were more significantly increased than the rats of the NN and PN groups. In addition, the weight of the placenta and the weight and length of the fetus were more significantly lower in the former than the latter. Obvious changes of anoxia and ischemia were observed in the tissues of the kidneys and every layer of the placenta. Conclusion: Our findings of hypertension syndrome induced with repeated cold-stress in pregnant rats can be applied to illustrate the pathogenesis of pregnancy-induced hypertension syndrome in human beings.展开更多
Many questions in natural science and engineering can be transformed into nonlinear equations. Newton iteration method is an important technique to one dimensional and multidimensional variables and iteration itself i...Many questions in natural science and engineering can be transformed into nonlinear equations. Newton iteration method is an important technique to one dimensional and multidimensional variables and iteration itself is very sensitive to initial guess point. This sensitive area is the Julia set of nonlinear discrete dynamic system which Newton iteration method forms. The Julia set, which is the boundaries of basins of attractions, displays the intricate fractal structures and chaos phenomena. By constructing repulsion two-cycle point function and making use of inverse image iteration method, a method to find Julia set point was introduced. For the first time, a new method to find all solutions was proposed based on utilizing sensitive fractal areas to locate the Julia set points to find all solutions of the nonlinear questions. The developed technique used an important feature of fractals to preserve shape of basins of attraction on infinitely small scales. The numerical examples in linkage synthesis showed that the method was effective and correct.展开更多
The transmitting models of ultrasonic vibration in ultrasonic transducer and capillary were presented according to the propagating mechanism of ultrasonic wave in elastic body. The coupling characteristics of ultrason...The transmitting models of ultrasonic vibration in ultrasonic transducer and capillary were presented according to the propagating mechanism of ultrasonic wave in elastic body. The coupling characteristics of ultrasonic longitudinal-complex transverse vibration system were simulated by Matlab software. The ultrasonic vibration displacement and the velocity of high frequency were measured by using the PSV-400-M2(1.5MHz) laser Doppler vibrometer. The vibration locus shapes driven by the same frequency and different frequencies were tested by using GDS-820S dual channel digital oscilloscope. The microstructures at bonding interface were observed by means of KYKY2800 scanning electron microscope. The results show that ultrasonic vibration displacement or velocity and energy density increase with the decrease of section area in the transmitting process. The vibration locus shapes driven simultaneously by the same frequency and different frequencies are elliptical (or circular) loci and rectangular (or square) loci, respectively. And the characteristics at bonding interface are improved by coupling loci.展开更多
In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have bee...In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have been calculated using Homotopy perturbation method (HPM) for temperature and nanoparticle equation while exact solutions have been calculated for velocity and pressure gradient. Numerical integration have been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated for five different peristaltic waves. Streamlines have been plotted at the end of the article.展开更多
A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The...A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.展开更多
The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full fac...The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full factorial design. The solubility was determined under low pressures and temperatures as a preliminary study for RPO par- ticle formation using scCO2. The solubility of RPO was 0.5-11.3 mg. (g CO2) -1 and was significantly affected by the pressure and temperature. RPO solubility increased with pressure and decreased with temperature. The Adachi-Lu model showed the best-fit for RPO solubility data with an average relative deviation of 14% with a high coefficient of determination, R2 of 0.9667, whereas the Peng-Robinson equation of state thermodynamic model recorded deviations of 17%-30%.展开更多
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ...In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.展开更多
Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of th...Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
文摘Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate grazing rates and grazing pressure. The results showed that Polymenophorea Oligotrichida was the dominant group with 16 species, and there were 4 species in Oligotrichina and 11 species in Tintinnina. The ciliates abundance ranged from 9 to 102 ind/m^3, instantaneous growth rates of phytoplankton (k) varied from 0.03 / d to 2.13 / d. Grazing rates of microzooplankton(g) ranged between 0.01 / d and 1.06 / d. The grazing pressure on initial phytoplankton stock (Pi) and primary production (Pp) was 0.089 % - 65.23 % and 33.63 % - 86.04 %, respectively. The grazing of microzooplankton was mainly limited by ciliates abundance. Results of grazing pressure on primary production indicated that microzooplankton played an improtant role in transmitting primary production in the north of South China Sea.
文摘The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.
文摘A low Reynolds number k-ε model is used in the numeri cal study on a circular semi-confined turbulent impinging jet . The result is c ompared with that of the standard k-ε model and a refined k-ε mode l, which re-consi-dered the fluctuating pressure diffusion term in the dissipa tion rate equation (ε-equation) through modeling. It shows that the low Re ynolds number k-ε model and the standard k-ε model yield very poor performance, while the predicting ability of the refined k-ε model is mu ch improved , especially for the turbulent kinetic energy k. So it can be co ncluded that the poor performance of the standard k-ε model is owing to t he incorrect considering the effect of the fluctuating pressure diffusion term r ather than the use of the wall function near the wall just as presumed in the re ference.
文摘According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.
文摘Objective: To establish a model for pregnancy-induced hypertension syndrome in rats. Methods: Adult female Wistar rats were randomized into non-pregnant control (NN), non-pregnant cold-stress control (NC), pregnant control (PN) and pregnant cold-stress (PC) groups. The rats of NN and PN groups were put under 25 ℃ and those of NC and PC groups under (4±2)℃ for 4 h every morning respectively in the whole experimental period. The blood pressure, urine protein, body weight, haematocrit, weight of the placenta and weight and length of the fetus were recorded and the histological changes of the placenta and the kidneys were also studied. Results: The blood pressure and urine protein of the rats of the NC and PC groups after 2 weeks of cold-stress were more significantly increased than the rats of the NN and PN groups. In addition, the weight of the placenta and the weight and length of the fetus were more significantly lower in the former than the latter. Obvious changes of anoxia and ischemia were observed in the tissues of the kidneys and every layer of the placenta. Conclusion: Our findings of hypertension syndrome induced with repeated cold-stress in pregnant rats can be applied to illustrate the pathogenesis of pregnancy-induced hypertension syndrome in human beings.
基金Sponsored by the Scientific Research Fund of Ministry Education(Grant No.02108),and the Key Scientific Research Fund of Hunan Provincial Education Depart-ment(Grant No.04A036),and the Grant of the11-th Five-year Plan for Key Construction Disciplines Mechanical Design and Theory of Hunan Province.
文摘Many questions in natural science and engineering can be transformed into nonlinear equations. Newton iteration method is an important technique to one dimensional and multidimensional variables and iteration itself is very sensitive to initial guess point. This sensitive area is the Julia set of nonlinear discrete dynamic system which Newton iteration method forms. The Julia set, which is the boundaries of basins of attractions, displays the intricate fractal structures and chaos phenomena. By constructing repulsion two-cycle point function and making use of inverse image iteration method, a method to find Julia set point was introduced. For the first time, a new method to find all solutions was proposed based on utilizing sensitive fractal areas to locate the Julia set points to find all solutions of the nonlinear questions. The developed technique used an important feature of fractals to preserve shape of basins of attraction on infinitely small scales. The numerical examples in linkage synthesis showed that the method was effective and correct.
文摘The transmitting models of ultrasonic vibration in ultrasonic transducer and capillary were presented according to the propagating mechanism of ultrasonic wave in elastic body. The coupling characteristics of ultrasonic longitudinal-complex transverse vibration system were simulated by Matlab software. The ultrasonic vibration displacement and the velocity of high frequency were measured by using the PSV-400-M2(1.5MHz) laser Doppler vibrometer. The vibration locus shapes driven by the same frequency and different frequencies were tested by using GDS-820S dual channel digital oscilloscope. The microstructures at bonding interface were observed by means of KYKY2800 scanning electron microscope. The results show that ultrasonic vibration displacement or velocity and energy density increase with the decrease of section area in the transmitting process. The vibration locus shapes driven simultaneously by the same frequency and different frequencies are elliptical (or circular) loci and rectangular (or square) loci, respectively. And the characteristics at bonding interface are improved by coupling loci.
基金the Higer Education Commission of Pakistan for providing research grant
文摘In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have been calculated using Homotopy perturbation method (HPM) for temperature and nanoparticle equation while exact solutions have been calculated for velocity and pressure gradient. Numerical integration have been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated for five different peristaltic waves. Streamlines have been plotted at the end of the article.
基金Project (No. 50378085) supported by the National Natural ScienceFoundation of China
文摘A frequency domain method for estimating wind-induced fluctuating internal pressure of structure with single windward opening is presented in this paper and wind tunnel tests were carried out to verify the theory. The nonlinear differential equation of internal pressure dynamics and iteration algorithm were applied to calculate fluctuating internal pressure and time domain analysis was used to verify the accuracy of the proposed method. A simplified estimation method is also provided and its scope of application is clarified. The mechanism of internal pressure fluctuation is obtained by using the proposed method in the frequency domain and a new equivalent opening ratio is defined to evaluate internal pressure fluctuation. A series of low-rise building models with various openings and internal volumes were designed for wind tunnel tests with results agreeing well with analytical results. It is shown that the proposed frequency domain method based on Gaussian distribution of internal pressure fluctuations can be applied to predict the RMS internal pressure coefficient with adequate accuracy for any opening dimensions, while the simplified method can only be used for structure with single dominant opening. Helmholtz resonance is likely to occur when the equivalent opening ratio is adequately high, and controlling individual opening dimension is an effective strategy for avoiding Helmholtz resonance in engineering.
基金supported by Geran Putra IPS(Vote No.:9469400),University Putra Malaysia
文摘The solubility of red palm oil (RPO) in supercritical carbon dioxide (scCO2) was determined using a dynamic method at 8.5-25 MPa and, 313.15-333.15 K and at a fixed scCO2 flow rate of 2.9 g. mn -1 using a full factorial design. The solubility was determined under low pressures and temperatures as a preliminary study for RPO par- ticle formation using scCO2. The solubility of RPO was 0.5-11.3 mg. (g CO2) -1 and was significantly affected by the pressure and temperature. RPO solubility increased with pressure and decreased with temperature. The Adachi-Lu model showed the best-fit for RPO solubility data with an average relative deviation of 14% with a high coefficient of determination, R2 of 0.9667, whereas the Peng-Robinson equation of state thermodynamic model recorded deviations of 17%-30%.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141147)
文摘In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments.
文摘Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.